A Long Short Term Memory with Peephole Connections and Generative Adversarial Network Based Collaborative Methodology to Identify Outliers in ECG Dataset

2020 ◽  
Vol 17 (8) ◽  
pp. 3798-3803
Author(s):  
M. D. Anto Praveena ◽  
B. Bharathi

Big Data analytics has become an upward field, and it plays a pivotal role in Healthcare and research practices. Big data analytics in healthcare cover vast numbers of dynamic heterogeneous data integration and analysis. Medical records of patients include several data including medical conditions, medications and test findings. One of the major challenges of analytics and prediction in healthcare is data preprocessing. In data preprocessing the outlier identification and correction is the important challenge. Outliers are exciting values that deviates from other values of the attribute; they may simply experimental errors or novelty. Outlier identification is the method of identifying data objects with somewhat different behaviors than expectations. Detecting outliers in time series data is different from normal data. Time series data are the data that are in a series of certain time periods. This kind of data are identified and cleared to bring the quality dataset. In this proposed work a hybrid outlier detection algorithm extended LSTM-GAN is helped to recognize the outliers in time series data. The outcome of the proposed extended algorithm attained better enactment in the time series analysis on ECG dataset processing compared with traditional methodologies.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 14322-14328 ◽  
Author(s):  
Fang Wang ◽  
Menggang Li ◽  
Yiduo Mei ◽  
Wenrui Li

2020 ◽  
Vol 8 (6) ◽  
pp. 3704-3708

Big data analytics is a field in which we analyse and process information from large or convoluted data sets to be managed by methods of data-processing. Big data analytics is used in analysing the data and helps in predicting the best outcome from the data sets. Big data analytics can be very useful in predicting crime and also gives the best possible solution to solve that crime. In this system we will be using the past crime data set to find out the pattern and through that pattern we will be predicting the range of the incident. The range of the incident will be determined by the decision model and according to the range the prediction will be made. The data sets will be nonlinear and in the form of time series so in this system we will be using the prophet model algorithm which is used to analyse the non-linear time series data. The prophet model categories in three main category and i.e. trends, seasonality, and holidays. This system will help crime cell to predict the possible incident according to the pattern which will be developed by the algorithm and it also helps to deploy right number of resources to the highly marked area where there is a high chance of incidents to occur. The system will enhance the crime prediction system and will help the crime department to use their resources more efficiently.


Author(s):  
Vasileios Zois ◽  
Charalampos Chelmis ◽  
Viktor K. Prasanna

Time series data emerge naturally in many fields of applied sciences and engineering including but not limited to statistics, signal processing, mathematical finance, weather and power consumption forecasting. Although time series data have been well studied in the past, they still present a challenge to the scientific community. Advanced operations such as classification, segmentation, prediction, anomaly detection and motif discovery are very useful especially for machine learning as well as other scientific fields. The advent of Big Data in almost every scientific domain motivates us to provide an in-depth study of the state of the art approaches associated with techniques for efficient querying of time series. This chapters aims at providing a comprehensive review of the existing solutions related to time series representation, processing, indexing and querying operations.


Author(s):  
Hamed Kianmehr ◽  
Nasim Sabounchi ◽  
Lina Begdache

Dietary factors are one of the risk factors that can impact the brain chemistry, which leads to mental distress. Based on our data mining approach, we found that mental distress in men is associated with eating unhealthy food. Our aim in this paper is to apply results from our big data analytics approach to inform system dynamics (SD) modeling to investigate the causal relationships between brain structures, nutrients from food and dietary supplements, and mental health. We perform descriptive analysis based on a large data set to estimate the SD modeling parameters. Finally, we calibrate the model towards a time series data collected for individuals on their dietary and distress patterns. The results reveal that bridging these different methodologies leads to further insights from the SD model and decreases the error of calibrated parameter values. Future research is needed to validate our initial results for investigating the relationship between mental distress and dietary intake.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 618-627
Author(s):  
Weixing Song ◽  
Jingjing Wu ◽  
Jianshe Kang ◽  
Jun Zhang

Abstract The aim of this study was to improve the low accuracy of equipment spare parts requirement predicting, which affects the quality and efficiency of maintenance support, based on the summary and analysis of the existing spare parts requirement predicting research. This article introduces the current latest popular long short-term memory (LSTM) algorithm which has the best effect on time series data processing to equipment spare parts requirement predicting, according to the time series characteristics of spare parts consumption data. A method for predicting the requirement for maintenance spare parts based on the LSTM recurrent neural network is proposed, and the network structure is designed in detail, the realization of network training and network prediction is given. The advantages of particle swarm algorithm are introduced to optimize the network parameters, and actual data of three types of equipment spare parts consumption are used for experiments. The performance comparison of predictive models such as BP neural network, generalized regression neural network, wavelet neural network, and squeeze-and-excitation network prove that the new method is effective and provides an effective method for scientifically predicting the requirement for maintenance spare parts and improving the quality of equipment maintenance.


Sign in / Sign up

Export Citation Format

Share Document