Intelligent Diagnosis Method of MRI Brain Image Using Parallel Self-Organizing Feature Maps Neural Network

2021 ◽  
Vol 11 (2) ◽  
pp. 487-496
Author(s):  
Li Liu ◽  
Chi Hua ◽  
Zixuan Cheng ◽  
Yunfeng Ji

Advances in medical imaging skills have promoted the influence of medical imaging in neuroscience. Having advanced medical imaging technology is essential for the medical industry. Magnetic resonance imaging (MRI) plays a central role in medical imaging. It plays a key role in the treatment of various human diseases. Doctors analyze brain size, shape, and location in brain MR images to assess brain disease and develop a medical plan. The manual division of brain tissue by experts is heavy and subjective. Therefore, the study of automatic segmentation of brain MR images has practical significance. Because the characteristics of brain MRI images are low contrast and high noise, which seriously affects the accuracy of image segmentation, the current image segmentation methods have some limitations in this application. In this paper, multiple self-organizing feature maps neural network (SOM-NN) are utilized to construct a parallel self-organizing feature maps neural network (PSOM-NN), which converts the segmentation problem of brain images into the classification problem of PSOMNN. The experiments show that SOM has strong self-learning ability in learning and training, and the parallel ability of PSOM-NN model greatly reduces the segmentation time, improves the real-time performance of the model, and helps to realize fully automatic or semi-automatic segmentation of the lesion area. PSOM can promote the improvement of segmentation accuracy and facilitate intelligent diagnosis.

2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

2021 ◽  
Author(s):  
Ritu Lahoti ◽  
Sunil Kumar Vengalil ◽  
Punith B Venkategowda ◽  
Neelam Sinha ◽  
Vinod Veera Reddy

2020 ◽  
Vol 10 (11) ◽  
pp. 2784-2794
Author(s):  
Mingyuan Pan ◽  
Yonghong Shi ◽  
Zhijian Song

The automatic segmentation of brain tumors in magnetic resonance (MR) images is very important in the diagnosis, radiotherapy planning, surgical navigation and several other clinical processes. As the location, size, shape, boundary of gliomas are heterogeneous, segmenting gliomas and intratumoral structures is very difficult. Besides, the multi-center issue makes it more challenging that multimodal brain gliomas images (such as T1, T2, fluid-attenuated inversion recovery (FLAIR), and T1c images) are from different radiation centers. This paper presents a multimodal, multi-scale, double-pathway, 3D residual convolution neural network (CNN) for automatic gliomas segmentation. In the pre-processing step, a robust gray-level normalization method is proposed to solve the multi-center problem, that the intensity range from deferent centers varies a lot. Then, a doublepathway 3D architecture based on DeepMedic toolkit is trained using multi-modality information to fuse the local and context features. In the post-processing step, a fully connected conditional random field (CRF) is built to improve the performance, filling and connecting the isolated segmentations and holes. Experiments on the Multimodal Brain Tumor Segmentation (BRATS) 2017 and 2019 dataset showed that this methods can delineate the whole tumor with a Dice coefficient, a sensitivity and a positive predictive value (PPV) of 0.88, 0.89 and 0.88, respectively. As for the segmentation of the tumor core and the enhancing area, the sensitivity reached 0.80. The results indicated that this method can segment gliomas and intratumoral structures from multimodal MR images accurately, and it possesses a clinical practice value.


Sign in / Sign up

Export Citation Format

Share Document