Multimodality Functional Magnetic Resonance Imaging Assisted Treatment of Primary Insomnia and Anxiety and Depression

2021 ◽  
Vol 11 (6) ◽  
pp. 1658-1667
Author(s):  
Guanfeng Chen ◽  
Risheng Huang ◽  
Bingqing Sun ◽  
Jingfa Zhu ◽  
Hongchun Zhang ◽  
...  

Based on multimodal functional magnetic resonance imaging technology, explore the changes of local brain function in the whole brain range of patients with primary insomnia at rest, and conduct correlation analysis to explore the relationship between this locality and function and clinical features. Provide further imaging evidence for the exploration of the neural mechanism of primary insomnia. Using multimodal functional magnetic resonance imaging, self-rating anxiety scale, self-rating depression scale to assess the status anxiety factor and trait anxiety of STAI in patients with primary insomnia (88 cases) and normal sleepers (82 cases). Factors and total scores, depressive mental disorders and total scores were statistically significantly different from the normal sleep group. The study found that patients with primary insomnia under the multimodal functional magnetic resonance imaging assisted treatment have abnormal local functional activities in multiple brain regions such as emotions and sensorimotor regions. We explored the brain of patients with primary insomnia from the perspective of functional differentiation. Changes in nerve activity are conducive to further understanding the characteristics of nerve activity in primary insomnia.

2021 ◽  
Author(s):  
Fan Yao ◽  
Qiu-Yu Li ◽  
Hui-Ye Shu ◽  
Rong-Bin Liang ◽  
Yi-Cong Pan ◽  
...  

Abstract Purpose: Previous studies on monocular blindness (MB) have mainly focused on concept and impact. The present study measured spontaneous brain activity in MB patients using the percentage of amplitude fluctuation (PerAF) method.Methods: Twenty-nine patients with MB (21 male and 8 female) and 29 age-, gender-, and weight-matched healthy controls (HCs) were recruited. All participants underwent resting state functional magnetic resonance imaging (rs-fMRI). The PerAF method was used to analyze the data and evaluate the spontaneous regional brain activity. The ability of PerAF values to distinguish patients with MB from HCs was analyzed using receiver operating characteristic (ROC) curves, and correlation analysis was used to assess the relationship between PerAF values of brain regions and the Hospital Anxiety and Depression Scale (HADS) scores.Results: PerAF values in Occipital_Mid_L/ Occipital_Mid_R/ Cingulum_Mid_L were significantly lower in patients with MB than in controls. Conversely, values in the Frontal_Sup_Orb_L / Frontal_Inf_Orb_L/ Temporal_Inf_L/ Frontal_Inf_Oper_L were significantly higher in MB patients than in HCs. And the AUC of ROC curves were follows: 0.904, (p<0.0001; 95% CI: 0.830-0.978) for Frontal_Sup_Orb_L/ Frontal_Inf_Orb_L; Temporal_Inf_L 0.883, (p<0.0001; 95% CI: 0.794-0.972); Frontal_Inf_Oper_L 0.964, (p<0.0001; 95% CI: 0.924-1.000), and 0.893 (p<0.0001; 95% CI: 0.812-0.973) for Occipital_Mid_L; Occipital_Mid_R 0.887, (p<0.0001; 95% CI: 0.802-0.971); Cingulum_Mid_L 0.855, (p<0.0001; 95% CI: 0.750-0.960).Conclusion: The results of our study show abnormal activity in some brain regions in patients with MB, indicating that these patients may be at risk of disorder related to these brain regions. These results may reflect the neuropathological mechanisms of MB and facilitate early MB diagnoses.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document