Preparation and Biomedical Applications of Core–Shell Silica/Magnetic Nanoparticle Composites

2012 ◽  
Vol 12 (4) ◽  
pp. 2964-2972 ◽  
Author(s):  
Chuanyan Li ◽  
Chao Ma ◽  
Fang Wang ◽  
Zhijiang Xi ◽  
Zhifei Wang ◽  
...  
2014 ◽  
Vol 2 (30) ◽  
pp. 4789-4793 ◽  
Author(s):  
R. C. Stone ◽  
B. Qi ◽  
D. Trebatoski ◽  
R. Jetti ◽  
Y. P. Bandera ◽  
...  

A simple but powerful design of contemporary magnetic nanoparticle composites for biomedical applications.


2021 ◽  
Author(s):  
Yingxue Tu ◽  
Caifen Lei ◽  
Fei Deng ◽  
Yiang Chen ◽  
Ying Wang ◽  
...  

Metal organic frameworks (MOFs) have the potential to boost the undervalued biomedical applications of metal ions. Such endeavor has been hindered by the challenge of how to avoid the (cyto)toxicity...


Nanoscale ◽  
2021 ◽  
Author(s):  
Frederik Laust Durhuus ◽  
Lau Halkier Wandall ◽  
Mathias Hoeg Boisen ◽  
Mathias Kure ◽  
Marco Beleggia ◽  
...  

Magnetically guided self-assembly of nanoparticles is a promising bottom-up method to fabricate novel materials and superstructures, such as, for example, magnetic nanoparticle clusters for biomedical applications. The existence of assembled...


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 29-35
Author(s):  
Claudia Milena Bedoya-Hincapié ◽  
Elisabeth Restrepo-Parra ◽  
Luis Demetrio López-Carreño

The potential of nanotechnology in the biomedical field has been crucial for contributing to the possibility of efficiently meeting present necessities with novel materials. Over the last few decades, nanostructures with a core/shell structure have attracted significant attention because of the possibility of changing their physical properties by varying their chemistry and geometry. These structures have become relevant in targeted therapy (drug delivery and treatments to complement chemotherapy and radiotherapy), imaging and in the stimulation of cellular functions. Thus in this paper the current development of core/shell nanostructures is reviewed, emphasizing the physical properties of those that have been proposed as potentially having biomedical applications, which are based in a magnetic behavior or in a mixture of magnetic and electric (multiferroic) phenomena.


2017 ◽  
Vol 12 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Komail Boustani ◽  
Saber Farjami Shayesteh ◽  
Mojtaba Salouti ◽  
Atefeh Jafari ◽  
Alireza Ahadpour Shal

Sign in / Sign up

Export Citation Format

Share Document