Time-Resolved Ultraviolet Near-Field Scanning Optical Microscope for Characterizing Photoluminescence Lifetime of Light-Emitting Devices

2013 ◽  
Vol 13 (3) ◽  
pp. 1798-1801 ◽  
Author(s):  
Kyoung-Duck Park ◽  
Hyun Jeong ◽  
Yong Hwan Kim ◽  
Sang-Youp Yim ◽  
Hong Seok Lee ◽  
...  
2015 ◽  
Vol 86 (2) ◽  
pp. 023703 ◽  
Author(s):  
J. Rudge ◽  
H. Xu ◽  
J. Kolthammer ◽  
Y. K. Hong ◽  
B. C. Choi

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 623-627 ◽  
Author(s):  
M. HARIDAS ◽  
L. N. TRIPATHI ◽  
J. K. BASU

Effect of shape and density on the energy transfer between metallic nanoparticles and semi conducting nanostructures was studied by observing the photoluminescence spectra using near field scanning optical microscope. The monolayers of gold nanoparticles, CdSe nanorods and composite with different number ratios were prepared using Langmuir Blodgett method. The spectra collected from the films with different number ratios of CdSe and gold shows a systematic variation of peak position and intensity as a function of number density of CdSe . The photoluminescence spectra collected from composite monolayer is blue shifted compared to the spectra from CdSe nanorods monolayer. Further we observed a blue shift in peak position and reduction emission intensity with respect to increase in the fraction of gold nanoparticles and surface density. We have provided explanation for the observed behavior in terms of strong exciton–plasmon interactions in the compact hybrid monolayers.


Nano Letters ◽  
2004 ◽  
Vol 4 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Christopher R. McNeill ◽  
Holger Frohne ◽  
John L. Holdsworth ◽  
John E. Furst ◽  
Bruce V. King ◽  
...  

2016 ◽  
Vol 2 (10) ◽  
pp. e1601156 ◽  
Author(s):  
M. Ibrahim Dar ◽  
Gwénolé Jacopin ◽  
Simone Meloni ◽  
Alessandro Mattoni ◽  
Neha Arora ◽  
...  

Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (<100 K) photoluminescence of CH3NH3PbI3and CH3NH3PbBr3reveals two distinct emission peaks, whereas that of CH(NH2)2PbBr3shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.


Sign in / Sign up

Export Citation Format

Share Document