Improved Photovoltaic Performance of Multiple Carbon-Doped ZnO Nanostructures Under UV and Visible Light Irradiation

2014 ◽  
Vol 14 (9) ◽  
pp. 7066-7071 ◽  
Author(s):  
Xianbin Liu ◽  
Hejun Du ◽  
Xiao Wei Sun ◽  
Zhaoyao Zhan ◽  
Gengzhi Sun, ◽  
...  
2017 ◽  
Vol 41 (17) ◽  
pp. 9314-9320 ◽  
Author(s):  
Sajid Ali Ansari ◽  
S. G. Ansari ◽  
H. Foaud ◽  
Moo Hwan Cho

Design of carbon doped ZnO nanostructures towards enhanced visible light driven photocatalytic and photoelectrochemical performance.


2018 ◽  
Vol 43 (9) ◽  
pp. 4335-4346 ◽  
Author(s):  
Yang Li ◽  
Liyuan Kuang ◽  
Dequan Xiao ◽  
Appala Raju Badireddy ◽  
Maocong Hu ◽  
...  

2019 ◽  
Vol 9 (13) ◽  
pp. 2741 ◽  
Author(s):  
Vincenzo Vaiano ◽  
Giuseppina Iervolino

Cu-doped ZnO photocatalysts at different Cu loadings were prepared by a precipitation method. The presence of Cu in the ZnO crystal lattice led to significant enhancement in photocatalytic activity for H2 production from an aqueous glycerol solution under visible light irradiation. The best Cu loading was found to be 1.08 mol %, which allowed achieving hydrogen production equal to 2600 μmol/L with an aqueous glycerol solution at 5 wt % initial concentration, the photocatalyst dosage equal to 1.5 g/L, and at the spontaneous pH of the solution (pH = 6). The hydrogen production rate was increased to about 4770 μmol/L by increasing the initial glycerol concentration up to 10 wt %. The obtained results evidenced that the optimized Cu-doped ZnO could be considered a suitable visible-light-active photocatalyst to be used in photocatalytic hydrogen production without the presence of noble metals in sample formulation.


2019 ◽  
Vol 118 ◽  
pp. 01013 ◽  
Author(s):  
Wei Xiong ◽  
Altair T.F. Cheung ◽  
Michael K.H. Leung

In this article, the carbon doped TiO2 (C-TiO2) quantum dots (QDs) were prepared through the hydrothermal method and calcination. The size of the C-TiO2 QDs is about 5.7 nm. The doping amount of carbon can be tuned by adjusting the volumes of the carbon source, ethylene glycol added. The carbon atoms are proved to be doped into the interstitial sites of TiO2 lattice and induce the change of chemical states of Ti 2p and C 1s. The doping of carbon leads to the increasing photocatalytic sterilization of E. coli under the visible light irradiation. The survival rate of E. coli cells over C-TiO2 is only 1.5 % after 6 h. The reactive oxygen species (ROS), such as hydroxyl radical and superoxide radical, are considered as the primary factors for the photocatalytic sterilization. Due to oxidative stress of the attack by ROS, the enzyme activity per cells increases for self-protection during the photocatalytic sterilization.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2479-2488 ◽  
Author(s):  
Liyuan Kuang ◽  
Wen Zhang

Carbon doped TiO2 anchored to reduced graphene oxide formed a hybrid nanocomposite (C-TiO2/rGO) that exhibited greater photocatalytic activity and stability.


Sign in / Sign up

Export Citation Format

Share Document