Artificial Neural Network for Combined Steam-Carbon Dioxide Reforming of Methane

2020 ◽  
Vol 20 (9) ◽  
pp. 5730-5733 ◽  
Author(s):  
Sharon Jo ◽  
Byung Chol Ma ◽  
Young Chul Kim

The CH4 conversion, CO2 conversion, and H2/CO ratio were set as dependent variables, as the feed rate, flow rate and reaction temperature as independent variables in the complex reaction of methane. We used the Artificial Neural Network (ANN) technique to build a model of the process. The ANN technique was able to predict the reforming process with higher accuracy due to the training capability. The reaction temperature has the greatest effect on the CO2–CH4 reforming reaction. This is because the catalytic reaction temperature has a direct influence on the thermodynamic value and the reaction rate and the equilibrium state.

Traffic accidents occurred on highway in Turkey cause materially and morally damage. To decrease the damage, prediction model developed. In this study, demographic and traffic data which from 1970 to 2007 are used. These data are consist of dependent and independent variables. Dependent variable is formed Number of Dead (ND). As for independent variables are comprised Population (P), Registered Number of Vehicle (VN), Vehicle-km (VK), Number of Drivers (DN). Models are developed using Artificial Neural Network (ANN) and Logarithmic Regression (LR) enhanced by Smeed. PVNVKDN model developed taking real values logarithm is the best performance of models in LR technique. VKDN created by using historical data sets is the best model in ANN technique. As for models created by randomly selected data, the best model is VKDN. When performances of best models are compared, VKDN is the best model because of lowest error rate.


In this paper an attempt is made to model chlorine decay using Artificial Neural Network (ANN). Initial chlorine concentration, fast and slow reacting organic and nitrogenous compounds and reaction rate constants of the compounds are used as inputs to the ANN model and the chlorine decay at different points in the decay curve are evaluated. ANN is trained by two different methods namely single output model and multi output models. Predicted data are compared with observed using correlation coefficient. Result indicates multi output model able to model more accurately than single output model.


2021 ◽  
Vol 19 (4) ◽  
pp. e0211-e0211
Author(s):  
Omer Keles ◽  

Aim of study: This study was conducted to classify hazelnut (Corylus avellana L.) varieties by using artificial neural network and discriminant analysis. Area of study: Samsun Province, Turkey. Material and methods: The physical, mechanical and optical properties of 11 hazelnut varieties were determined for three major axes. The parameters of physical, mechanical and optical properties were included as independent variables, while hazelnut varieties were included as dependent variables. Models were created for each of the three axes to classify hazelnut varieties. Main results: Classification success rates with Artificial Neural Networks (ANN) and Discriminant Analysis (DA) were found as 89.1% and 92.7% for X axis, as 92.7% and 92.7% for Y axis and as 86.8% and 88.7% for Z axis, respectively. The classification results of ANN and DA models were found to be very close to each other. Both models can be used in the classification of hazelnut varieties. Research highlights: The results obtained for the identification and classification of hazelnut varieties show the feasibility and effectiveness of the proposed models.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document