Non-Linear Thermal Radiative Marangoni Boundary Layer Flow of Gamma Al2O3 Nanofluids Past a Stretching Sheet

2018 ◽  
Vol 7 (5) ◽  
pp. 944-950 ◽  
Author(s):  
N. Vishnu Ganesh ◽  
P. K. Kameswaran ◽  
Qasem M. Al-Mdallal ◽  
A. K. Abdul Hakeem ◽  
B. Ganga
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


Author(s):  
Mahesh Kumar ◽  
G Janardhana Reddy ◽  
N Naresh Kumar ◽  
O Anwar Bég

To provide a deeper insight of the transport phenomena inherent to the manufacturing of magnetic nano-polymer materials, in the present work a mathematical model is developed for time-dependent hydromagnetic rheological nano-polymer boundary layer flow and heat transfer over a stretching sheet in the presence of a transverse static magnetic field. Joule heating (Ohmic dissipation) and viscous heating effects are included since these phenomena arise frequently in magnetic materials processing. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. The Tiwari–Das nanoscale model is adopted which permits different nanoparticles to be simulated (in this article, both copper–water and aluminium oxide–water nanofluids are considered). Similarity transformations are utilized to convert the governing partial differential conservation equations into a system of coupled, non-linear ordinary differential equations with appropriate wall and free stream boundary conditions. The shooting technique is used to solve the reduced non-linear coupled ordinary differential boundary value problem via MATLAB symbolic software. Validation with published results from the literature is included for the special cases of non-dissipative and Newtonian nanofluid flows. Fluid velocity and temperature profiles for both copper and aluminium oxide (Al2O3) nanofluids are observed to be enhanced with greater non-Newtonian couple stress parameter and magnetic parameter, whereas the opposite trend is computed with greater values of unsteadiness parameter. The boundary layer flow is accelerated with increasing buoyancy parameter, elastic sheet stretching parameter and convection parameter. Temperatures are generally increased with greater couple stress rheological parameter and are consistently higher for the aluminium oxide nanoparticle case. Temperatures are also boosted with magnetic parameter and exhibit an overshoot near the wall when magnetic parameter exceeds unity (magnetic force exceeds viscous force). A decrease in temperatures is induced with increasing sheet stretching parameter. Increasing Eckert number elevates temperatures considerably. With greater nanoparticle volume fraction, both skin friction and Nusselt number are elevated, and copper nanoparticles achieve higher magnitudes than aluminium oxide.


2014 ◽  
Vol 6 (2) ◽  
pp. 257-272 ◽  
Author(s):  
M. G. Reddy

The problem of laminar fluid flow which results from a permeable stretching of a flat surface in a nanofluid with the effects of heat radiation, magnetic field, velocity slip and convective boundary conditions have been investigated. The transport equations used in the analysis took into account the effect of Brownian motion and thermophoresis parameters. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. thermal radiation parameter R, magnetic parameter M, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, velocity slip parameter A convection and Biot numbe Bi. Similarity transformation is used to convert the governing non-linear boundary-layer equations into coupled higher order non-linear ordinary differential equations. These equations are numerically solved using fourth order Runge-Kutta method along with shooting technique. An analysis has been carried out to elucidate the effects of governing parameters corresponding to various physical conditions. Numerical results are obtained for distributions of velocity, temperature and concentration, as well as, for the skin friction, local Nusselt number and local Sherwood number for several values of governing parameters. Keywords: Nanofluid, Boundary layer flow; Stretching sheet; Thermal radiation; MHD; Velocity slip; Convective boundary. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i2.17233 J. Sci. Res. 6 (2), 257-272 (2014)  


Sign in / Sign up

Export Citation Format

Share Document