sheet stretching
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

2019 ◽  
Vol 13 ◽  
pp. 100367 ◽  
Author(s):  
L.Th. Benos ◽  
U.S. Mahabaleshwar ◽  
P.H. Sakanaka ◽  
I.E. Sarris

2019 ◽  
Vol 24 (2) ◽  
pp. 425-438 ◽  
Author(s):  
D. Srinivasacharya ◽  
P. Jagadeeshwar

Abstract This article analyses the influence of viscous dissipation and thermoporesis effects on the viscous fluid flow over a porous sheet stretching exponentially by applying convective boundary condition. The numerical solutions to the governing equations are evaluated using a local similarity and non-similarity approach along with a successive linearisation procedure and Chebyshev collocation method. The influence of the pertinent parameters on the physical quantities are displayed through graphs.


Author(s):  
Mahesh Kumar ◽  
G Janardhana Reddy ◽  
N Naresh Kumar ◽  
O Anwar Bég

To provide a deeper insight of the transport phenomena inherent to the manufacturing of magnetic nano-polymer materials, in the present work a mathematical model is developed for time-dependent hydromagnetic rheological nano-polymer boundary layer flow and heat transfer over a stretching sheet in the presence of a transverse static magnetic field. Joule heating (Ohmic dissipation) and viscous heating effects are included since these phenomena arise frequently in magnetic materials processing. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. The Tiwari–Das nanoscale model is adopted which permits different nanoparticles to be simulated (in this article, both copper–water and aluminium oxide–water nanofluids are considered). Similarity transformations are utilized to convert the governing partial differential conservation equations into a system of coupled, non-linear ordinary differential equations with appropriate wall and free stream boundary conditions. The shooting technique is used to solve the reduced non-linear coupled ordinary differential boundary value problem via MATLAB symbolic software. Validation with published results from the literature is included for the special cases of non-dissipative and Newtonian nanofluid flows. Fluid velocity and temperature profiles for both copper and aluminium oxide (Al2O3) nanofluids are observed to be enhanced with greater non-Newtonian couple stress parameter and magnetic parameter, whereas the opposite trend is computed with greater values of unsteadiness parameter. The boundary layer flow is accelerated with increasing buoyancy parameter, elastic sheet stretching parameter and convection parameter. Temperatures are generally increased with greater couple stress rheological parameter and are consistently higher for the aluminium oxide nanoparticle case. Temperatures are also boosted with magnetic parameter and exhibit an overshoot near the wall when magnetic parameter exceeds unity (magnetic force exceeds viscous force). A decrease in temperatures is induced with increasing sheet stretching parameter. Increasing Eckert number elevates temperatures considerably. With greater nanoparticle volume fraction, both skin friction and Nusselt number are elevated, and copper nanoparticles achieve higher magnitudes than aluminium oxide.


Author(s):  
Y. Watanabe ◽  
D. M. Ingram

When a steep breaking wave hits a vertical sea wall, in shallow water, a rapidly ascending planar jet forms. This jet is ejected with high acceleration due to pressure created by the violent wave impact on the wall, creating a so-called ‘flip-through’ event. Previous studies have focused on the impulsive pressures on, and within, the wall and on the velocity of the jet. Here, in contrast, we consider the formation and break-up of the jet itself. Experiments show that during flip-through a fluid sheet, bounded by a rim, forms. This sheet has unstable transitional behaviours and organizing jets; undulations in the thickness of the fluid sheet are rapidly amplified and ruptured into an array of vertical ligaments. Lateral undulations of the rim lead to the formation of finger-jets, which subsequently break up to form droplets and spray. We present a linear stability analysis of the rim–sheet systems that highlights the contributions of rim retraction and sheet stretching to the break-up process. The mechanisms for the sequential surface deformations in the rim–sheet system are also described. Multiple, distinct, instability modes are identified during the rim deceleration, sheet stretch attenuation and rim retraction processes. The wavenumbers (and deformation length scales) associated with these instability modes are shown to lead to the characteristic double peak spectrum of surface displacement observed in the experiments. These mechanisms help to explain the columnar structures often seen in photographs of violent wave impacts on harbour walls.


2007 ◽  
Vol 52 (12) ◽  
pp. 1719-1723 ◽  
Author(s):  
Li Lu ◽  
S. McKenna-Lawlor ◽  
S. Barabash ◽  
ZhenXing Liu ◽  
JinBin Cao ◽  
...  

Author(s):  
P. Anuradha ◽  
S. Krishnambal

The heat transfer characteristics of a visco-elastic fluid within the boundary layer formed by the passage of a sheet stretching at a uniform rate through it are studied under varying influencing parameters using a numerical technique. The influence of considering or ignoring elastic deformation in the thermal analysis is studied in the presence of chosen values of non-dimensional parameters like Prandtl number (Pr) and Eckert number (E). Two cases of sheet surface conditions are considered — (i) PST case involving prescribed surface temperature and (ii) PHF case involving prescribed heat flux at the surface. The results of this numerical study are diagrammatically represented with appropriate conclusions drawn on the influence of the above parameters considered in isolation or together. The trend of results is seen to agree well with those of other researchers who used other solution techniques. A judious choice of the above two principal non-dimensional parameters is suggested for application to a cooling process typical of a polymer extrusion industry.


Sign in / Sign up

Export Citation Format

Share Document