Nanofluid Viscoelastic Fluid Flow with Thermophoresis

2019 ◽  
Vol 11 (12) ◽  
pp. 1739-1749
Author(s):  
Gamal M. Abdel-Rahman ◽  
Faiza M. N. El-Fayez

We in this study investigated Brownian motion and thermophoresis effects embedded in a porous medium flow with heat transfer generation and chemical reaction on a stretching sheet and Jeffrey fluid model for viscoelastic nanofluid under the effects of magnetic field and thermal radiation. The nanofluid was assumed incompressible and the flow was laminar, with base fluid containing the following types of nanoparticles: Copper (Cu), Aluminum (Al2O3) and Titanium Oxide (TiO2). The governing continuity, momentum, and energy equations for the nanofluid were reduced using similarity transformation and converted into a system of non-Linear ordinary differential equations which were solved numerically. Numerical solutions were also obtained for the velocity, temperature and nanoparticle concentration fields, as well as for skin friction coefficient and Nusselt number. Finally, numerical values for the physical quantities, such as local skin-friction coefficient, local Nusselt number, local Sherwood number and wall deposition flux are herein presented in tabular form.

2019 ◽  
Vol 11 (12) ◽  
pp. 1739-1749
Author(s):  
Gamal M. Abdel-Rahman ◽  
Faiza M. N. El-Fayez

We in this study investigated Brownian motion and thermophoresis effects embedded in a porous medium flow with heat transfer generation and chemical reaction on a stretching sheet and Jeffrey fluid model for viscoelastic nanofluid under the effects of magnetic field and thermal radiation. The nanofluid was assumed incompressible and the flow was laminar, with base fluid containing the following types of nanoparticles: Copper (Cu), Aluminum (Al2O3) and Titanium Oxide (TiO2). The governing continuity, momentum, and energy equations for the nanofluid were reduced using similarity transformation and converted into a system of non-Linear ordinary differential equations which were solved numerically. Numerical solutions were also obtained for the velocity, temperature and nanoparticle concentration fields, as well as for skin friction coefficient and Nusselt number. Finally, numerical values for the physical quantities, such as local skin-friction coefficient, local Nusselt number, local Sherwood number and wall deposition flux are herein presented in tabular form.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Mostafa Mahmoud ◽  
Shimaa Waheed

A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.


2019 ◽  
Vol 33 (36) ◽  
pp. 1950455
Author(s):  
Nepal Chandra Roy ◽  
Sudharonjon Roy ◽  
Naved Azum ◽  
Anish Khan ◽  
Abdullah M. Asiri ◽  
...  

We examined heat and mass transfer characteristics of mixed convective slip flow over a wedge taking into account the effect of variable transport properties. Unlike other studies, we have utilized non-similar transformation to get the non-similar features of the mixed convective slip flow. For comparison, stream function formulation is used to reduce the governing equation into a convenient form for short- and long-time regimes. We have determined the series solutions by adopting the perturbation techniques. The agreement between the numerical and series solutions is found to be excellent. Numerical solutions reveal that the slip parameters augment the momentum, thermal and concentration boundary layers. The local skin friction coefficient, the local Nusselt number and the local Sherwood number are found to decrease for higher value of slip parameters. For the increasing value of the variable viscosity parameter, the velocity is stronger, but the temperature and concentration lessen. Contrary to this, this parameter diminishes the local skin friction coefficient, local Nusselt number and local Sherwood number. Due to the increase of mass diffusivity parameter, the velocity and concentration significantly increase whereas the temperature remains almost unaffected. Moreover, the mass diffusivity variation parameter leads to an increase in the local skin friction coefficient and local Nusselt number, but it reduces the local Sherwood number.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
O. D. Makinde ◽  
M. S. Tshehla

This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Kaustav Pradhan ◽  
Subho Samanta ◽  
Abhijit Guha

The natural convective boundary layer flow of a nanofluid over an isothermal horizontal plate is studied analytically. The model used for the nanofluid accounts for the effects of Brownian motion and thermophoresis. The analysis shows that the velocity, temperature, and nanoparticle volume fraction profiles in the respective boundary layers depend not only on the Prandtl number (Pr) and Lewis number (Le) but also on three additional dimensionless parameters: the Brownian motion parameter Nb, the buoyancy ratio parameter Nr and the thermophoresis parameter Nt. The velocity, temperature, and nanoparticle volume fraction profiles for the nanofluid are found to have a weak dependence on the values of Nb, Nr, and Nt. The effect of the above-mentioned parameters on the local skin-friction coefficient and Nusselt number has been studied extensively. It has been observed that as Nr increases, the local skin-friction coefficient decreases whereas local Nusselt number remains almost constant. As Nb or Nt increases, the local skin-friction coefficient increases whereas the local Nusselt number decreases.


2009 ◽  
Vol 13 (4) ◽  
pp. 175-181 ◽  
Author(s):  
Khalid Alammar

Using the standard k-e model, 3-dimensional turbulent flow and heat transfer characteristics in U-tubes are investigated. Uncertainty is approximated using experimental correlations and grid independence study. Increasing the Dean number is shown to intensify a secondary flow within the curved section. The overall Nusselt number for the tube is found to decrease substantially relative to straight tubes, while the overall skin friction coefficient remains practically unaffected. Local skin friction coefficient, Nusselt number, and wall temperature along the tube wall are presented.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1088 ◽  
Author(s):  
Tuqa Abuldrazzaq ◽  
Hussein Togun ◽  
Hamed Alsulami ◽  
Marjan Goodarzi ◽  
Mohammad Reza Safaei

This paper reports a numerical study on heat transfer improvement in a double backward-facing expanding channel using different convectional fluids. A finite volume method with the k-ε standard model is used to investigate the effects of step, Reynolds number and type of liquid on heat transfer enhancement. Three types of conventional fluids (water, ammonia liquid and ethylene glycol) with Reynolds numbers varying from 98.5 to 512 and three cases for different step heights at a constant heat flux (q = 2000 W/m2) are examined. The top wall of the passage and the bottom wall of the upstream section are adiabatic, while the walls of both the first and second steps downstream are heated. The results show that the local Nusselt number rises with the augmentation of the Reynolds number, and the critical effects are seen in the entrance area of the first and second steps. The maximum average Nusselt number, which represents the thermal performance, can be seen clearly in case 1 for EG in comparison to water and ammonia. Due to the expanding of the passage, separation flow is generated, which causes a rapid increment in the local skin friction coefficient, especially at the first and second steps of the downstream section for water, ammonia liquid and EG. The maximum skin friction coefficient is detected in case 1 for water with Re = 512. Trends of velocities for positions (X/H1 = 2.01, X/H2 = 2.51) at the first and second steps for all the studied cases with different types of convectional fluids are indicated in this paper. The presented findings also include the contour of velocity, which shows the recirculation zones at the first and second steps to demonstrate the improvement in the thermal performance.


Author(s):  
V. Ravikumar ◽  
M.C. Raju ◽  
G.S.S. Raju

The problem of unsteady, two-dimensional, laminar, boundary-layer flow of a viscous, incompressible, electrically conducting and heat-absorbing Rivlin-Ericksen flow fluid along a semi-infinite vertical permeable moving plate has been investigated. A uniform transverse magnetic field is applied in the direction of the flow. The presence of thermal and concentration buoyancy effects is considered. The plate is assumed to move with a constant velocity in the direction of fluid flow while the free stream velocity is assumed to follow the exponentially increasing small perturbation law. Time-dependent wall suction is assumed to occur at the permeable surface. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and some graphical results for the velocity, temperature and concentration distributions within the boundary layer are presented. Skin-friction coefficient, Nusselt number and Sherwood number are also discussed with the help of the graphs. Local skin-friction coefficient increases with an increase in the permeability parameter, and Soret number whereas reverse effects is seen in the case of dimensionless viscoelasticity parameter of the Rivlin-Ericksen fluid. Nusselt number decreases in the presence of heat absorption. The presence of Soret number Sherwood number increases.


Author(s):  
Rajesh Vemula ◽  
A J Chamkha ◽  
Mallesh M. P.

Purpose – The purpose of this paper is to focus on the numerical modelling of transient natural convection flow of an incompressible viscous nanofluid past an impulsively started semi-infinite vertical plate with variable surface temperature. Design/methodology/approach – The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. A robust, well-tested, Crank-Nicolson type of implicit finite-difference method, which is unconditionally stable and convergent, is used to solve the governing non-linear set of partial differential equations. Findings – The local and average values of the skin-friction coefficient (viscous drag) and the average Nusselt number (the rate of heat transfer) decreased, while the local Nusselt number increased for all nanofluids, namely, aluminium oxide-water, copper-water, titanium oxide-water and silver-water with an increase in the temperature exponent m. Selecting aluminium oxide as the dispersing nanoparticles leads to the maximum average Nusselt number (the rate of heat transfer), while choosing silver as the dispersing nanoparticles leads to the minimum local Nusselt number compared to the other nanofluids for all values of the temperature exponent m. Also, choosing silver as the dispersing nanoparticles leads to the minimum skin-friction coefficient (viscous drag), while selecting aluminium oxide as the dispersing nanoparticles leads to the maximum skin-friction coefficient (viscous drag) for all values of the temperature exponent m. Research limitations/implications – The Brinkman model for dynamic viscosity and Maxwell-Garnett model for thermal conductivity are employed. The governing boundary layer equations are written according to The Tiwari-Das nanofluid model. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. Practical implications – The present simulations are relevant to nanomaterials thermal flow processing in the chemical engineering and metallurgy industries. This study also provides an important benchmark for further simulations of nanofluid dynamic transport phenomena of relevance to materials processing, with alternative computational algorithms (e.g. finite element methods). Originality/value – This paper is relatively original and illustrates the influence of variable surface temperature on transient natural convection flow of a viscous incompressible nanofluid and heat transfer from an impulsively started semi-infinite vertical plate.


Sign in / Sign up

Export Citation Format

Share Document