scholarly journals Neural correlates of spatio-temporal grouping in bistable apparent motion perception

2014 ◽  
Vol 14 (10) ◽  
pp. 800-800
Author(s):  
L. Shen ◽  
L. Chen ◽  
Q. Chen
Author(s):  
Brian Rogers

The ability to detect motion is one of the most important properties of our visual system and the visual systems of nearly every other species. Motion perception is not just important for detecting the movement of objects—both for catching prey and for avoiding predators—but it is also important for providing information about the 3-D structure of the world, for maintaining balance, determining our direction of heading, segregating the scene and breaking camouflage, and judging time-to-contact with other objects in the world. ‘Motion perception’ describes the spatio-temporal process of motion perception and the perceptual effects that tell us something about the characteristics of the motion system: apparent motion, the motion after-effect, and induced motion.


NeuroImage ◽  
2014 ◽  
Vol 98 ◽  
pp. 442-459 ◽  
Author(s):  
Alejandra Rossi ◽  
Francisco J. Parada ◽  
Artemy Kolchinsky ◽  
Aina Puce

2010 ◽  
Vol 5 (8) ◽  
pp. 666-666
Author(s):  
L. R. Kozak ◽  
E. Formisano ◽  
W. Backes ◽  
J. Teixeira ◽  
J. Xavier ◽  
...  

2012 ◽  
Vol 32 (41) ◽  
pp. 14344-14354 ◽  
Author(s):  
H. Takemura ◽  
H. Ashida ◽  
K. Amano ◽  
A. Kitaoka ◽  
I. Murakami

NeuroImage ◽  
2001 ◽  
Vol 13 (6) ◽  
pp. 893
Author(s):  
C.I. Horenstein ◽  
R.R. Ramirez ◽  
E. Kronberg ◽  
U. Ribary ◽  
R.R. Llinas

Perception ◽  
1985 ◽  
Vol 14 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Vilayanur S Ramachandran ◽  
Stuart M Anstis

Is motion perception based on a local piecemeal analysis of the image or do ‘global’ effects also play an important role? Use was made of bistable apparent-motion displays in trying to answer this question. Two spots were flashed simultaneously on diagonally opposite corners of a 1 deg wide square and then switched off and replaced by two spots appearing on the other two corners. One can either see vertical or horizontal oscillation and the display is bistable just as a Necker cube is. If several such bistable figures are randomly scattered on the screen and presented simultaneously, then one usually sees the same motion axis in all of them, suggesting the presence of field-like effects for resolving ambiguity in apparent motion. While viewing a single figure observers experience hysteresis: they tend to adhere to one motion axis or the other and can switch the axis only by looking away and looking back after 10–30 s have elapsed. The figure can be switched off and made to reappear at some other random location on the screen and it is then always found to retain its motion axis. Several such demonstrations are presented to show that spatial induction effects in metastable motion displays may provide a particularly valuable probe for studying ‘laws’ of perceptual organization.


2008 ◽  
Vol 363 (1511) ◽  
pp. 3771-3786 ◽  
Author(s):  
Brian Knutson ◽  
Stephanie M Greer

‘Anticipatory affect’ refers to emotional states that people experience while anticipating significant outcomes. Historically, technical limitations have made it difficult to determine whether anticipatory affect influences subsequent choice. Recent advances in the spatio-temporal resolution of functional magnetic resonance imaging, however, now allow researchers to visualize changes in neural activity seconds before choice occurs. We review evidence that activation in specific brain circuits changes during anticipation of monetary incentives, that this activation correlates with affective experience and that activity in these circuits may influence subsequent choice. Specifically, an activation likelihood estimate meta-analysis of cued response studies indicates that nucleus accumbens (NAcc) activation increases during gain anticipation relative to loss anticipation, while anterior insula activation increases during both loss and gain anticipation. Additionally, anticipatory NAcc activation correlates with self-reported positive arousal, whereas anterior insula activation correlates with both self-reported negative and positive arousal. Finally, NAcc activation precedes the purchase of desirable products and choice of high-risk gambles, whereas anterior insula activation precedes the rejection of overpriced products and choice of low-risk gambles. Together, these findings support a neurally plausible framework for understanding how anticipatory affect can influence choice.


2017 ◽  
Vol 284 (1858) ◽  
pp. 20170673 ◽  
Author(s):  
Irene Senna ◽  
Cesare V. Parise ◽  
Marc O. Ernst

Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities.


Sign in / Sign up

Export Citation Format

Share Document