scholarly journals Contralateral delay activity predicts the affective consequences of ignoring items in visual working memory

2016 ◽  
Vol 16 (12) ◽  
pp. 713
Author(s):  
David De Vito ◽  
Mark Fenske ◽  
Naseem Al-Aidroos
Author(s):  
Christian Merkel ◽  
Mandy Viktoria Bartsch ◽  
Mircea A Schoenfeld ◽  
Anne-Katrin Vellage ◽  
Notger G Müller ◽  
...  

Visual working memory (VWM) is an active representation enabling the manipulation of item information even in the absence of visual input. A common way to investigate VWM is to analyze the performance at later recall. This approach, however, leaves uncertainties about whether the variation of recall performance is attributable to item encoding and maintenance or to the testing of memorized information. Here, we record the contralateral delay activity (CDA) - an established electrophysiological measure of item storage and maintenance - in human subjects performing a delayed orientation precision estimation task. This allows us to link the fluctuation of recall precision directly to the process of item encoding and maintenance. We show that for two sequentially encoded orientation items, the CDA amplitude reflects the precision of orientation recall of both items, with higher precision being associated with a larger amplitude. Furthermore, we show that the CDA amplitude for each item varies independently from each other, suggesting that the precision of memory representations fluctuates independently.


2019 ◽  
Vol 85 (10) ◽  
pp. S285-S286
Author(s):  
Brian Coffman ◽  
Tim Murphy ◽  
Gretchen Haas ◽  
Carl Olson ◽  
Raymond Y. Cho ◽  
...  

2018 ◽  
Author(s):  
David De Vito ◽  
Anne E. Ferrey ◽  
Mark J. Fenske ◽  
Naseem Al-Aidroos

Ignoring visual stimuli in the external environment leads to decreased liking of those items; a phenomenon attributed to the affective consequences of attentional inhibition. Here we investigated the generality of this ‘distractor devaluation’ phenomenon by asking whether ignoring stimuli represented internally within visual working memory has the same affective consequences. In two experiments we presented participants with two or three visual stimuli and then, after the stimuli were no longer visible, provided an attentional cue indicating which item in memory was the target they would have to later recall, and which were task-irrelevant distractors. Participants subsequently judged how much they liked these stimuli. Previously-ignored distractors were consistently rated less favorably than targets, replicating prior findings of distractor devaluation. To gain converging evidence, in Experiment 2, we also examined the electrophysiological processes associated with devaluation by measuring individual differences in attention (N2pc) and working memory (CDA) event-related potentials following the attention cue. Larger amplitude of an N2pc-like component was associated with greater devaluation, suggesting that individuals displaying more effective selection of memory targets—an act aided by distractor inhibition—displayed greater levels of distractor devaluation. Individuals showing a larger post-cue CDA amplitude (but not pre-cue CDA amplitude) also showed greater distractor devaluation, supporting prior evidence that visual working-memory resources have a functional role in effecting devaluation. Together, these findings demonstrate that ignoring working-memory representations has affective consequences, and add to the growing evidence that the contribution of selective-attention mechanisms to a wide range of human thought and behaviors leads to devaluation.


2013 ◽  
Vol 25 (5) ◽  
pp. 743-753 ◽  
Author(s):  
Mowei Shen ◽  
Wenjun Yu ◽  
Xiaotian Xu ◽  
Zaifeng Gao

The nature of the building blocks of information in visual working memory (VWM) is a fundamental issue that has not been well resolved. Most researchers take objects as the building blocks, although this perspective has received criticism. The objects could be physically separated ones (strict object hypothesis) or hierarchical objects created from separated individuals (broad object hypothesis). Meanwhile, a newly proposed Boolean map theory for visual attention suggests that Boolean maps may be the building blocks of VWM (Boolean map hypothesis); this perspective could explain many critical findings of VWM. However, no previous study has examined these hypotheses. We explored this issue by focusing on a critical point on which they make distinct predictions. We asked participants to remember two distinct objects (2-object), three distinct objects (3-object), or three objects with repeated information (mixed-3-object, e.g., one red bar and two green bars, green bars could be represented as one hierarchical object) and adopted contralateral delay activity (CDA) to tap into the maintenance phase of VWM. The mixed-3-object condition could generate two Boolean maps, three objects, or three objects most of the time (hierarchical objects are created in certain trials, retaining two objects). Simple orientations (Experiment 1) and colors (Experiments 2 and 3) were used as stimuli. Although the CDA of the mixed-3-object condition was slightly lower than that of the 3-object condition, no significant difference was revealed between them. Both conditions displayed significantly higher CDAs than the 2-object condition. These findings support the broad object hypothesis. We further suggest that Boolean maps might be the unit for retrieval/comparison in VWM.


Sign in / Sign up

Export Citation Format

Share Document