scholarly journals Global feature-based inhibition for a task-irrelevant feature of an unattended stimulus

2010 ◽  
Vol 9 (8) ◽  
pp. 138-138
Author(s):  
A. Lustig ◽  
A. Torralbo ◽  
D. M. Beck
2019 ◽  
Vol 31 (4) ◽  
pp. 469-481 ◽  
Author(s):  
Haydee G. Garcia-Lazaro ◽  
Mandy V. Bartsch ◽  
Carsten N. Boehler ◽  
Ruth M. Krebs ◽  
Sarah E. Donohue ◽  
...  

Objects that promise rewards are prioritized for visual selection. The way this prioritization shapes sensory processing in visual cortex, however, is debated. It has been suggested that rewards motivate stronger attentional focusing, resulting in a modulation of sensory selection in early visual cortex. An open question is whether those reward-driven modulations would be independent of similar modulations indexing the selection of attended features that are not associated with reward. Here, we use magnetoencephalography in human observers to investigate whether the modulations indexing global color-based selection in visual cortex are separable for target- and (monetary) reward-defining colors. To assess the underlying global color-based activity modulation, we compare the event-related magnetic field response elicited by a color probe in the unattended hemifield drawn either in the target color, the reward color, both colors, or a neutral task-irrelevant color. To test whether target and reward relevance trigger separable modulations, we manipulate attention demands on target selection while keeping reward-defining experimental parameters constant. Replicating previous observations, we find that reward and target relevance produce almost indistinguishable gain modulations in ventral extratriate cortex contralateral to the unattended color probe. Importantly, increasing attention demands on target discrimination increases the response to the target-defining color, whereas the response to the rewarded color remains largely unchanged. These observations indicate that, although task relevance and reward influence the very same feature-selective area in extrastriate visual cortex, the associated modulations are largely independent.


2009 ◽  
Vol 9 (12) ◽  
pp. 12-12 ◽  
Author(s):  
S. Taya ◽  
W. J. Adams ◽  
E. W. Graf ◽  
N. Lavie

2011 ◽  
Vol 23 (9) ◽  
pp. 2231-2239 ◽  
Author(s):  
Carsten N. Boehler ◽  
Mircea A. Schoenfeld ◽  
Hans-Jochen Heinze ◽  
Jens-Max Hopf

Attention to one feature of an object can bias the processing of unattended features of that object. Here we demonstrate with ERPs in visual search that this object-based bias for an irrelevant feature also appears in an unattended object when it shares that feature with the target object. Specifically, we show that the ERP response elicited by a distractor object in one visual field is modulated as a function of whether a task-irrelevant color of that distractor is also present in the target object that is presented in the opposite visual field. Importantly, we find this modulation to arise with a delay of approximately 80 msec relative to the N2pc—a component of the ERP response that reflects the focusing of attention onto the target. In a second experiment, we demonstrate that this modulation reflects enhanced neural processing in the unattended object. These observations together facilitate the surprising conclusion that the object-based selection of irrelevant features is spatially global even after attention has selected the target object.


2020 ◽  
Author(s):  
Hannah J Stewart ◽  
Dawei Shen ◽  
Nasim Sham ◽  
Claude Alain

AbstractSelective attention to sound object features such as pitch and location is associated with enhanced brain activity in ventral and dorsal streams, respectively. We examined the role of these pathways in involuntary orienting and conflict resolution using functional magnetic resonance imaging (fMRI). Participants were presented with two tones that may share, or not, the same non-spatial (frequency) or spatial (location) auditory features. In separate blocks of trials, participants were asked to attend to sound frequency or sound location and ignore the change in the task-irrelevant feature. In both attend-frequency and attend-location tasks, response times were slower when the task-irrelevant feature changed than when it stayed the same (involuntary orienting). This behavioural cost coincided with enhanced activity in the prefrontal cortex and superior temporal gyrus (STG). Conflict resolution was examined by comparing situations where the change in stimulus features was congruent (both features changed) and incongruent (only one feature changed). Participants were slower and less accurate for incongruent than congruent sound features. This congruency effect was associated with enhanced activity in the prefrontal cortex, and was greater in the right STG and medial frontal cortex during the attend-location than during the attend-frequency task. Together, these findings do not support a strict division of ‘labour’ into ventral and dorsal streams, but rather suggest interactions between these pathways in situations involving changes in task-irrelevant sound feature and conflict resolution. These findings also validate the Test of Attention in Listening task by revealing distinct neural correlates for involuntary orienting and conflict resolution.


2019 ◽  
Author(s):  
Cooper A. Smout ◽  
Marta I. Garrido ◽  
Jason B. Mattingley

AbstractRecent studies have shown that prediction and attention can interact under various circumstances, suggesting that the two processes are based on interdependent neural mechanisms. In the visual modality, attention can be deployed to the location of a task-relevant stimulus (‘spatial attention’) or to a specific feature of the stimulus, such as colour or shape, irrespective of its location (‘feature-based attention’). Here we asked whether predictive processes are influenced by feature-based attention outside the current spatial focus of attention. Across two experiments, we recorded neural activity with electroencephalography (EEG) as human observers performed a feature-based attention task at fixation and ignored a stream of peripheral stimuli with predictable or surprising features. Central targets were defined by a single feature (colour or orientation) and differed in salience across the two experiments. Task-irrelevant peripheral patterns usually comprised one particular conjunction of features (standards), but occasionally deviated in one or both features (deviants). Consistent with previous studies, we found reliable effects of feature-based attention and prediction on neural responses to task-irrelevant patterns in both experiments. Crucially, we observed an interaction between prediction and feature-based attention in both experiments: the neural effect of feature-based attention was larger for surprising patterns than it was for predicted patterns. These findings suggest that global effects of feature-based attention depend on surprise, and are consistent with the idea that attention optimises the precision of predictions by modulating the gain of prediction errors.Significance StatementTwo principal mechanisms facilitate the efficient processing of sensory information: prediction uses prior information to guide the interpretation of sensory events, whereas attention biases the processing of these events according to their behavioural relevance. A recent theory proposes to reconcile attention and prediction under a unifying framework, casting attention as a ‘precision optimisation’ mechanism that enhances the gain of prediction errors. Crucially, this theory suggests that attention and prediction interact to modulate neural responses, but this hypothesis remains to be tested with respect to feature-based attention mechanisms outside the spatial focus of attention. Here we show that global effects of feature-based attention are enhanced when stimuli possess surprising features, suggesting that feature-based attention and prediction are interdependent neural mechanisms.


2015 ◽  
Vol 15 (12) ◽  
pp. 667
Author(s):  
Garrett Swan ◽  
Brad Wyble

2018 ◽  
Author(s):  
Angus F. Chapman ◽  
Viola S. Störmer

Theories of visual attention differ in what they define as the core unit of selection. Feature-based theories emphasize the importance of visual features (e.g., color, size, motion), demonstrated through enhancement of attended features across the visual field, while object-based theories propose that attention enhances all features belonging to the same object. Here we test how within-object enhancement of features interacts with spatially global effects of feature-based attention. Participants attended a set of colored dots (moving coherently upwards or downwards) to detect brief luminance decreases, while simultaneously detecting speed changes in another set of dots in the opposite visual field. Participants had higher speed detection rates for the dot array that matched the motion direction of the attended color array, although motion direction was entirely task-irrelevant. This effect persisted even when it was detrimental for task performance. Overall, these results indicate that task-irrelevant object features are enhanced globally, surpassing object boundaries.


Sign in / Sign up

Export Citation Format

Share Document