target color
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 35)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Kirsten Derks ◽  
Geert Van der Snickt ◽  
Stijn Legrand ◽  
Katlijne Van der Stighelen ◽  
Koen Janssens

AbstractAlthough the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as ‘simultaneous contrast’ and ‘the crispening effect’, described in literature only centuries later. As such, the recently termed ‘ring condition’ can be seen as the present-day equivalent of the ‘halo solution’ that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.


2021 ◽  
Vol 5 (4) ◽  
pp. 131
Author(s):  
Xingjian Wei ◽  
Abhinav Bhardwaj ◽  
Li Zeng ◽  
Zhijian Pei

PolyJet 3D printing can produce any color by mixing multiple materials. However, there are often large deviations between the measured color of printed samples and the target color (when the target color is used as the specified color in the printer software). Therefore, to achieve a target color on a printed sample, the specified color in the printer software should not be the same as the target color. This study applies response surface methodology (RSM) to determine the optimal color specification to compensate for color deviations of the measured color of printed samples from the target color in PolyJet 3D printing. The RSM has three steps. First, a set of experiments are designed for a target color according to central composite design. Second, the experimental data are used to develop a second-order multivariate multiple regression model to predict the deviation between the measured color and the target color. Third, the optimal color specification (often different from the target color) is determined by using the developed predictive model and the desirability function. When the optimal color specification is used as the specified color in the printer software, the deviation between the predicted color of the printed sample and the target color is minimized. The proposed method is applied to four target colors to demonstrate its effectiveness. The results show that the proposed method performs better than the conventional color specification method without compensation in achieving the four target colors by 33% on average.


2021 ◽  
Vol 10 (6) ◽  
pp. 263-269
Author(s):  
Natalia Schäfer ◽  
◽  
Radosław Balwierz ◽  
Anna Krzeszewska-Zaręba ◽  
Zbigniew Skotnicki ◽  
...  

The cosmetic market is rich in products that allow changing the color of hair. There are three options for chemical coloring, depending on the duration of the target color. Among them, there are short-term, semi-permanent, and long-term dyeing. Using synthetic ingredients, it is possible to obtain a full range of colors. Reports of undesirable side effects of chemical dyes on both the scalp and hair structure support a return to natural hair coloration and a development in this direction. The aim of the work was to draw attention to apply botanical raw materials in hair dyeing. The work presents the characteristics of the following plant materials used in hair dyeing: defenseless lawsonia, oxalic hibiscus, rhubarb, elderberry and chamomile.


2021 ◽  
Author(s):  
Kirsten Derks ◽  
Geert Van der Snickt ◽  
Stijn Legrand ◽  
Katlijne Van der Stighelen ◽  
Koen Janssens

Abstract Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA- XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th -century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th - and 16th -century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as ‘simultaneous contrast’ and ‘the crispening effect’, described in literature only centuries later. As such, the recently termed ‘ring condition’ can be seen as the present-day equivalent of the ‘halo solution’ that was seemingly empirically or intuitively developed by 17th -century artists. Modern optics proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.


2021 ◽  
Author(s):  
Yuki Harada ◽  
Junji Ohyama

AbstractA head-mounted display cannot cover an angle of visual field as wide as that of natural view (out-of-view problem). To enhance the visual cognition of an immersive environment, previous studies have developed various guidance designs that visualize the location or direction of items presented in the users’ surroundings. However, two issues regarding the guidance effects remain unresolved: How are the guidance effects different with each guided direction? How much is the cognitive load required by the guidance? To investigate the two issues, we performed a visual search task in an immersive environment and measured the search time of a target and time spent to recognize a guidance design. In this task, participants searched for a target presented on a head-mounted display and reported the target color while using a guidance design. The guidance designs (a moving window, 3D arrow, radiation, spherical gradation, and 3D radar) and target directions were manipulated. The search times showed an interaction effect between guidance designs and guided directions, e.g., the 3D arrow and radar shorten the search time for targets presented at the back of users. The recognition times showed that the participants required short times to recognize the details of the moving window and radiation but long times for the 3D arrow, spherical gradation, and 3D radar. These results suggest that the moving window and radiation are effective with respect to cognitive load, but the 3D arrow and radar are effective for guiding users’ attention to necessary items presented at the out-of-view.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009332
Author(s):  
Fredrik Allenmark ◽  
Ahu Gokce ◽  
Thomas Geyer ◽  
Artyom Zinchenko ◽  
Hermann J. Müller ◽  
...  

In visual search tasks, repeating features or the position of the target results in faster response times. Such inter-trial ‘priming’ effects occur not just for repetitions from the immediately preceding trial but also from trials further back. A paradigm known to produce particularly long-lasting inter-trial effects–of the target-defining feature, target position, and response (feature)–is the ‘priming of pop-out’ (PoP) paradigm, which typically uses sparse search displays and random swapping across trials of target- and distractor-defining features. However, the mechanisms underlying these inter-trial effects are still not well understood. To address this, we applied a modeling framework combining an evidence accumulation (EA) model with different computational updating rules of the model parameters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to data from a (previously published) PoP study that had revealed significant inter-trial effects from several trials back for repetitions of the target color, the target position, and (response-critical) target feature. By performing a systematic model comparison, we aimed to determine which EA model parameter and which updating rule for that parameter best accounts for each inter-trial effect and the associated n-back temporal profile. We found that, in general, our modeling framework could accurately predict the n-back temporal profiles. Further, target color- and position-based inter-trial effects were best understood as arising from redistribution of a limited-capacity weight resource which determines the EA rate. In contrast, response-based inter-trial effects were best explained by a bias of the starting point towards the response associated with a previous target; this bias appeared largely tied to the position of the target. These findings elucidate how our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mandy V. Bartsch ◽  
Christian Merkel ◽  
Mircea A. Schoenfeld ◽  
Jens-Max Hopf

AbstractWhether doing the shopping, or driving the car – to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature. To test this idea, we had human participants switch their attention on the fly between unpredicted target color alternatives, while recording the electromagnetic brain response to probes matching the target, a non-target, or a distracting alternative target color. Paradoxically, we observed a temporally prioritized processing of distractor colors. A larger neural modulation for the distractor followed by its stronger attenuation expedited target identification. Our results suggest that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations.


2021 ◽  
Vol 2021 (3) ◽  
pp. 108-1-108-14
Author(s):  
Eberhard Hasche ◽  
Oliver Karaschewski ◽  
Reiner Creutzburg

In modern moving image production pipelines, it is unavoidable to move the footage through different color spaces. Unfortunately, these color spaces exhibit color gamuts of various sizes. The most common problem is converting the cameras’ widegamut color spaces to the smaller gamuts of the display devices (cinema projector, broadcast monitor, computer display). So it is necessary to scale down the scene-referred footage to the gamut of the display using tone mapping functions [34].In a cinema production pipeline, ACES is widely used as the predominant color system. The all-color compassing ACES AP0 primaries are defined inside the system in a general way. However, when implementing visual effects and performing a color grade, the more usable ACES AP1 primaries are in use. When recording highly saturated bright colors, color values are often outside the target color space. This results in negative color values, which are hard to address inside a color pipeline. "Users of ACES are experiencing problems with clipping of colors and the resulting artifacts (loss of texture, intensification of color fringes). This clipping occurs at two stages in the pipeline: <list list-type="simple"> <list-item>- Conversion from camera raw RGB or from the manufacturer’s encoding space into ACES AP0</list-item> <list-item>- Conversion from ACES AP0 into the working color space ACES AP1" [1]</list-item> </list>The ACES community established a Gamut Mapping Virtual Working Group (VWG) to address these problems. The group’s scope is to propose a suitable gamut mapping/compression algorithm. This algorithm should perform well with wide-gamut, high dynamic range, scene-referred content. Furthermore, it should also be robust and invertible. This paper tests the behavior of the published GamutCompressor when applied to in- and out-ofgamut imagery and provides suggestions for application implementation. The tests are executed in The Foundry’s Nuke [2].


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Qingqing Liu ◽  
Di Gao ◽  
Wei Xu

According to the old surface coating process of European and American furniture, the surface of modified poplar is first differentiated pre-treatment, and then the bottom color modification and material color modification are respectively applied to the modified poplar after the surface differentiation treatment. The visual physical quantity and physical and chemical properties were measured and compared with mahogany, which is commonly used in old furniture in Europe and America to explore the effect of colorants and coloring steps, as well as different surface pretreatments on the coloring effect. Finally, it is concluded that continuous coloring operations can narrow the difference in brightness and red color value in the coloring layer of modified poplar and mahogany. Continuous coloring operations increase the difference between the yellow-green color values of modified poplar and mahogany. Therefore, the coloring difference between modified poplar and mahogany was affected by the colorant and coloring steps. Through color accumulation, the gap between the two in the target color coloring effect can be reduced, thereby reducing the difference between the coloring effect of modified poplar and mahogany.


2021 ◽  
Vol 40 (2) ◽  
pp. 1-16
Author(s):  
Nanxuan Zhao ◽  
Quanlong Zheng ◽  
Jing Liao ◽  
Ying Cao ◽  
Hanspeter Pfister ◽  
...  

When adding a photo onto a graphic design, professional graphic designers often adjust its colors based on some target colors obtained from the brand or product to make the entire design more memorable to audiences and establish a consistent brand identity. However, adjusting the colors of a photo in the context of a graphic design is a difficult task, with two major challenges: (1) Locality: The color is often adjusted locally to preserve the semantics and atmosphere of the original image; and (2) Naturalness: The modified region needs to be carefully chosen and recolored to obtain a semantically valid and visually natural result. To address these challenges, we propose a learning-based approach to photo color adjustment for graphic designs, which maps an input photo along with the target colors to a recolored result. Our method decomposes the color adjustment process into two successive stages: modifiable region selection and target color propagation. The first stage aims to solve the core, challenging problem of which local image region(s) should be adjusted, which requires not only a common sense of colors appearing in our visual world but also understanding of subtle visual design heuristics. To this end, we capitalize on both natural photos and graphic designs to train a region selection network, which detects the most likely regions to be adjusted to the target colors. The second stage trains a recoloring network to naturally propagate the target colors in the detected regions. Through extensive experiments and a user study, we demonstrate the effectiveness of our selective region-based photo recoloring framework.


Sign in / Sign up

Export Citation Format

Share Document