scholarly journals Visual Information Fidelity with better Vision Models and better Mutual Information Estimates

2021 ◽  
Vol 21 (9) ◽  
pp. 2351
Author(s):  
Jesus Malo ◽  
BENYAMIN KHERAVDAR ◽  
QIANG LI
2020 ◽  
Vol 10 (23) ◽  
pp. 8645
Author(s):  
Zhaozheng Chen ◽  
Xiaoqing Li ◽  
Mingyue Ding

Atomic force acoustic microscopy (AFAM) can provide surface morphology and internal structures of the samples simultaneously, with broad potential in non-destructive imaging of cells. As the output of AFAM, morphology and acoustic images reflect different features of the cells, respectively. However, there are few studies about the fusion of these images. In this paper, a novel method is proposed to fuse these two types of images based on grayscale inversion and selection of best-fit intensity. First, grayscale inversion is used to transform the morphology image into a series of inverted images with different average intensities. Then, the max rule is applied to fuse those inverted images and acoustic images, and a group of pre-fused images is obtained. Finally, a selector is employed to extract and export the expected image with the best-fit intensity among those pre-fused images. The expected image can preserve both the acoustic details of the cells and the background’s gradient information well, which benefits the analysis of the cell’s subcellular structure. The experiments’ results demonstrated that our method could provide the clearest boundaries between the cells and background, and preserve most details from the morphology and acoustic images according to quantitative comparisons, including standard deviation, mutual information, Xydeas and Petrovic metric, feature mutual information, and visual information fidelity fusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fayadh Alenezi ◽  
K. C. Santosh

One of the major shortcomings of Hopfield neural network (HNN) is that the network may not always converge to a fixed point. HNN, predominantly, is limited to local optimization during training to achieve network stability. In this paper, the convergence problem is addressed using two approaches: (a) by sequencing the activation of a continuous modified HNN (MHNN) based on the geometric correlation of features within various image hyperplanes via pixel gradient vectors and (b) by regulating geometric pixel gradient vectors. These are achieved by regularizing proposed MHNNs under cohomology, which enables them to act as an unconventional filter for pixel spectral sequences. It shifts the focus to both local and global optimizations in order to strengthen feature correlations within each image subspace. As a result, it enhances edges, information content, contrast, and resolution. The proposed algorithm was tested on fifteen different medical images, where evaluations were made based on entropy, visual information fidelity (VIF), weighted peak signal-to-noise ratio (WPSNR), contrast, and homogeneity. Our results confirmed superiority as compared to four existing benchmark enhancement methods.


Author(s):  
Vivek Aggarwal ◽  
Anupama Gupta

Background: Medical images are widely used within healthcare and medical research. There is an increased interest in precisely correlating information in these images through registration techniques for investigative and therapeutic purposes. This work proposes and evaluates an improved measure function for registration of carotid ultrasound and magnetic resonance images (MRI) taken at different times. Methods: To achieve this, a morphological edge detection operator has been designed to extract the vital edge information from images which is integrated with the Mutual Information (MI) to carry out the registration process. The improved performance of proposed registration measure function is demonstrated using four quality metrics: Correlation Coefficient (CC), Structural Similarity Index (SSIM), Visual Information Fidelity (VIF) and Gradient Magnitude Similarity Deviation (GMSD). The qualitative validation has also been done through visual inspection of the registered image pairs by clinical radiologists. Results: The experimental results showed that the proposed method outperformed the existing method (based on integrated MI and standard edge detection) for both ultrasound and MR images in terms of CC by about 4.67%, SSIM by 3.21%, VIF by 18.5%, and decreased GMSD by 37.01%. Whereas, in comparison to the standard MI based method, the proposed method has increased CC by 16.29%, SSIM by 16.13%, VIF by 52.56% and decreased GMSD by 66.06%, approximately. Conclusion: Thus, the proposed method improves the registration accuracy when the original images are corrupted by noise, have low intensity values or missing data.


2019 ◽  
Author(s):  
Benjamin Balas ◽  
Amanda Auen ◽  
Alyson Saville ◽  
Jamie Schmidt ◽  
Assaf Harel

Uncovering when children learn to use specific visual information for recognizingobject categories is essential for understanding how experience shapes recognition.Research on the development of face recognition has focused on children’s use oflow-level information (e.g. orientation sub-bands), or on children's use of high-levelinformation, namely, configural or holistic information. Do children also useintermediate complexity features for categorizing faces and objects, and if so, atwhat age? Intermediate-complexity features bridge the gap between low- and high- level processing: they have computational benefits for object detection and segmentation, and are known to drive neural responses in the ventral visual system.Here, we asked when children develop sensitivity to diagnostic category information in intermediate-complexity features. We presented children (5-10 years old) and adults with image fragments of faces (Experiment 1) and cars (Experiment 2) varying in their mutual information, which quantities a fragment's diagnosticity of a specific category. Our goal was to determine whether children were sensitive to the amount of mutual information in these fragments, and if their information usage is different from adults’. We found that despite better overall categorization performance in adults, all children were sensitive to fragment diagnosticity in both categories, suggesting that intermediate representations of appearance are established early in childhood. Moreover, children's usage of mutual information was not limited to face fragments, suggesting the extracting intermediate complexity features is a process that is not specific only to faces. We discuss the implications of our findings for developmental theories of face and object recognition.


Sign in / Sign up

Export Citation Format

Share Document