scholarly journals Controlled human malaria infection with a clone of Plasmodium vivax with high quality genome assembly

JCI Insight ◽  
2021 ◽  
Author(s):  
Angela M. Minassian ◽  
Yrene Themistocleous ◽  
Sarah E. Silk ◽  
Jordan R. Barrett ◽  
Alison Kemp ◽  
...  
2021 ◽  
Author(s):  
Angela M Minassian ◽  
Yrene Themistocleous ◽  
Sarah E Silk ◽  
Jordan R Barrett ◽  
Alison Kemp ◽  
...  

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, two healthy malaria-naive UK adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers and, prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected red blood cells. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate six healthy malaria-naive UK adults by blood-stage CHMI, at three different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high quality genome assembly by using a hybrid assembly method. We analysed leading vaccine candidate antigens and multigene families, including the Vivax interspersed repeat (VIR) genes of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


2017 ◽  
Vol 33 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Ruth O. Payne ◽  
Paul M. Griffin ◽  
James S. McCarthy ◽  
Simon J. Draper

Author(s):  
Hui Zhang ◽  
Yuexing Wang ◽  
Ce Deng ◽  
Sheng Zhao ◽  
Peng Zhang ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 488 ◽  
Author(s):  
Shiyong Zhang ◽  
Jia Li ◽  
Qin Qin ◽  
Wei Liu ◽  
Chao Bian ◽  
...  

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea A. Berry ◽  
Joshua M. Obiero ◽  
Mark A. Travassos ◽  
Amed Ouattara ◽  
Drissa Coulibaly ◽  
...  

AbstractKnowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document