scholarly journals Vitamin E inhibits CD95 ligand expression and protects T cells from activation-induced cell death

2002 ◽  
Vol 110 (5) ◽  
pp. 681-690 ◽  
Author(s):  
Min Li-Weber ◽  
Markus A. Weigand ◽  
Marco Giaisi ◽  
Dorothee Süss ◽  
Monika K. Treiber ◽  
...  
Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 301-308 ◽  
Author(s):  
Simone Fulda ◽  
Gudrun Strauss ◽  
Eric Meyer ◽  
Klaus-Michael Debatin

Abstract Activation-induced cell death (AICD) in T cells is mediated by CD95 ligand (CD95L)/receptor interaction, which has also been implicated in apoptosis induction by some anticancer agents. In this article we show that both anti-CD3-triggering (AICD) and doxorubicin treatment led to the production of a functionally active CD95L in the CD3+/T-cell receptor-positive (TCR+) T leukemia cell line H9. CD95L-expressing H9 cells killed CD95-sensitive J16 or CEM target cells, but not CD95-resistant CEM or J16 cells overexpressing dominant negative FADD (J16/FADD-DN). By immunoprecipitation, CD95L was physically bound to CD95, suggesting that AICD and doxorubicin-induced apoptosis involve CD95L-mediated CD95 aggregation, thereby triggering the CD95 death pathway. CD95 aggregation was associated with the recruitment of FADD and caspase-8 to the CD95 receptor to form the CD95 death-inducing signaling complex (DISC), resulting in caspase-8 activation and cleavage of the effector caspase-3 and PARP. Blocking of the CD95L/receptor interaction by antagonistic antibodies to CD95 or to CD95L also blocked AICD and inhibited the early phase of doxorubicin-induced apoptosis, though cell death induced by doxorubicin eventually proceeded in a CD95-independent manner. These findings may explain some conflicting data on the role of death receptor systems in drug-induced apoptosis. Thus, in cells with an inducible CD95 receptor/ligand system, drug-induced apoptosis may be mediated by CD95L-initiated DISC formation and activation of downstream effector programs similar to AICD in T cells. (Blood. 2000;95:301-308)


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 301-308 ◽  
Author(s):  
Simone Fulda ◽  
Gudrun Strauss ◽  
Eric Meyer ◽  
Klaus-Michael Debatin

Activation-induced cell death (AICD) in T cells is mediated by CD95 ligand (CD95L)/receptor interaction, which has also been implicated in apoptosis induction by some anticancer agents. In this article we show that both anti-CD3-triggering (AICD) and doxorubicin treatment led to the production of a functionally active CD95L in the CD3+/T-cell receptor-positive (TCR+) T leukemia cell line H9. CD95L-expressing H9 cells killed CD95-sensitive J16 or CEM target cells, but not CD95-resistant CEM or J16 cells overexpressing dominant negative FADD (J16/FADD-DN). By immunoprecipitation, CD95L was physically bound to CD95, suggesting that AICD and doxorubicin-induced apoptosis involve CD95L-mediated CD95 aggregation, thereby triggering the CD95 death pathway. CD95 aggregation was associated with the recruitment of FADD and caspase-8 to the CD95 receptor to form the CD95 death-inducing signaling complex (DISC), resulting in caspase-8 activation and cleavage of the effector caspase-3 and PARP. Blocking of the CD95L/receptor interaction by antagonistic antibodies to CD95 or to CD95L also blocked AICD and inhibited the early phase of doxorubicin-induced apoptosis, though cell death induced by doxorubicin eventually proceeded in a CD95-independent manner. These findings may explain some conflicting data on the role of death receptor systems in drug-induced apoptosis. Thus, in cells with an inducible CD95 receptor/ligand system, drug-induced apoptosis may be mediated by CD95L-initiated DISC formation and activation of downstream effector programs similar to AICD in T cells. (Blood. 2000;95:301-308)


APOPTOSIS ◽  
2006 ◽  
Vol 12 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Kazuhisa Nakano ◽  
Kazuyoshi Saito ◽  
Shinichiro Mine ◽  
Sho Matsushita ◽  
Yoshiya Tanaka

2010 ◽  
Vol 184 (7) ◽  
pp. 3487-3494 ◽  
Author(s):  
Alziana Moreno da Cunha Pedrosa ◽  
Ricardo Weinlich ◽  
Giuliana Patricia Mognol ◽  
Bruno Kaufmann Robbs ◽  
João Paulo de Biaso Viola ◽  
...  

1995 ◽  
Vol 181 (1) ◽  
pp. 71-77 ◽  
Author(s):  
M R Alderson ◽  
T W Tough ◽  
T Davis-Smith ◽  
S Braddy ◽  
B Falk ◽  
...  

A significant proportion of previously activated human T cells undergo apoptosis when triggered through the CD3/T cell receptor complex, a process termed activation-induced cell death (AICD). Ligation of Fas on activated T cells by either Fas antibodies or recombinant human Fas-ligand (Fas-L) also results in cytolysis. We demonstrate that these two pathways of apoptosis are causally related. Stimulation of previously activated T cells resulted in the expression of Fas-L mRNA and lysis of Fas-positive target cells. Fas-L antagonists inhibited AICD of T cell clones and staphylococcus enterotoxin B (SEB)-specific T cell lines. The data indicate AICD in previously stimulated T cells is mediated by Fas/Fas-L interactions.


Sign in / Sign up

Export Citation Format

Share Document