scholarly journals Studies of the human factor VIII/von Willebrand factor protein. III. Qualitative defects in von Willebrand's disease.

1975 ◽  
Vol 56 (4) ◽  
pp. 814-827 ◽  
Author(s):  
H R Gralnick ◽  
B S Coller ◽  
Y Sultan
1987 ◽  
Author(s):  
S Joost ◽  
A Koedam ◽  
Joost C M Meijers ◽  
Jan J Sixma ◽  
Bonno N Bouma

Activated protein C (APC) inactivated the cofactors factor V (FV) and factor VIII (FVIII). In the case of FV, this reaction and the respective roles of Ca2+ , phospholipids and protein S have been well documented. We investigated the role of protein S and von Willebrand factor (VWF) on the inactivation of FVIII.Purified human factor VIII (3 units/ml) was incubated with protein C (0.2 μg/ml) in the presence of 8 μg/ml phospholipid, 5 mM CaCl, and 1 unit/ml hirudin. Factor VIII coagulant activity decreased with a pseudo first-order rate constant of 0.09 min . The reaction rate increased linearly with the concentration of prot^ig S in the incubation mixture. 12I-FVIII was incubated under the same conditions. SDS-polyacrylamide gel electrophoresis showed cleavage products of Mr 43 and 22 kDa. High Mr bands (FVIII-heavy chain) ranging fromMr 108 to208 kDa disappeared while the Mr 80 kDa FVIII-lightchain remained unchanged. The degradationpattern was not changed by addition of protein S.The FVIII-VWF complex was reconstitutedby mixing the two components (±2 units VWF/units FVIII) and lowering the calcium concentration to 2 mM. The inactivation of the FVIII-VWF complex by APC proceeded at a 15- to 20-fold slower rate as compared to the isolated FVIII, indicating a protection of FVIII by VWF. Protein S exhibited no cofactor activity on the inactivation of FVIII-VWF by APC. The protective effect of VWF was lost completely after activation of the FVIII-VWF complexwith thrombin (0.05 units/ml).When FVIII (0.1 units/ml) was added toplasma of a patient with severe von Willebrand's disease, 96% of its activitywas lost in 20 min after the addition of APC. All of the FVIII activity was retained when haemophilic plasma was used. Mixing experiments showed that one unit ofVWF unit FVIII is needed to fully protec FVIII against APC. These results may explain the observed lability of FVIII in von Willebrand's disease patients.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 823-831 ◽  
Author(s):  
VT Turitto ◽  
HJ Weiss ◽  
TS Zimmerman ◽  
II Sussman

The present studies were undertaken to determine whether factor VIII/von Willebrand factor (vWF) present in the vessel wall (in addition to that in plasma) may mediate the attachment of platelets to subendothelium. Subendothelium from everted rabbit aorta was exposed to human citrated blood flowing through an annular perfusion chamber at 40 mL/min (wall shear rate of 2,600 s-1 for five minutes). The vessel segments were incubated at 37 degrees C for one hour with various dilutions of either goat-anti-rabbit factor VIII/vWF serum or an IgG fraction prepared from the serum. Control segments were incubated with serum or IgG from a nonimmunized goat. Values of platelet contact (C), platelet adhesion (C + S), and thrombus formation (T) on the subendothelium were evaluated by a morphometric technique. Compared with vessels incubated with fractions prepared from a normal goat, a significant decrease in platelet adhesion (C + S), ranging from 45% to 65%, was observed on vessels incubated with various dilutions (1:5 to 1:50) of either serum or IgG fractions of goat-anti-rabbit factor VIII/vWF. A similar decrease in platelet adhesion was observed with vessels incubated with an F(ab')2 fragment against rabbit factor VIII/vWF prepared in the goat. When goat-anti-rabbit factor VIII/vWF IgG was added to rabbit blood (1:75 dilution), platelet adhesion was reduced to the same extent (65%) on normal rabbit vessels and on vessels pre-incubated with goat-anti-rabbit factor VIII/vWF. Immunofluorescence studies revealed the presence of rabbit factor VIII/vWF in the subendothelium of rabbit aorta and the continued binding of the goat-anti-factor VIII/vWF antibodies on subendothelium during the perfusion studies. No uptake of human factor VIII/vWF on the rabbit subendothelium was observed by this immunologic technique; human factor VIII/vWF was found to be entirely associated with the attached human platelets. Thus, factor VIII/vWF in the vessel wall may mediate platelet attachment to subendothelium in a manner similar to that of plasma factor VIII/vWF.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 542-548 ◽  
Author(s):  
HR Gralnick ◽  
MC Cregger ◽  
SB Williams

Abstract The factor VIII/von Willebrand factor (f.VIII/vWf) protein was purified from the plasma of a patient with von Willebrand's disease (vWd). The patient had all of the classic laboratory findings of vWd except for the ristocetin-induced platelet aggregation of his own platelet-rich plasma. The disease has been documented in three generations. Comparison of the purified normal and vWd f.VIIi/vWf protein revealed several abnormalities, including decreased concentration of f.VIII/vWf antigen; decreased specific vWf activity; absence of the larger molecular forms of the f.VIII/vWf protein; carbohydrate deficiencies affecting the sialic acid, penultimate galactose and N- acetylglucosamine moieties; and decreased binding of the f.VIII/vWf protein to its platelet receptor. These studies indicate the multiplicity of biochemical and functional abnormalities associated with the f.VIII/vWf protein in vWd. f.VIII/vWf protein to normal f.VIII/vWf protein that had been treated with 2-mercaptoethanol (2-ME) to reduce the multimer size and then treated with specific exoglycosidases to remove the sialic acid and penultimate galactose residues revealed similar biologic properties.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 465-468 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
LP McKeown ◽  
ME Rick ◽  
P Maisonneuve ◽  
...  

Abstract 1-D-Amino(8-D-arginine)-vasopressin (DDAVP) infusion in three patients with type IIa von Willebrand's disease (vWD) resulted in a normalization of the factor VIII coagulant, factor VIII-related antigen, and von Willebrand factor (vWF) (ristocetin cofactor) activities and the bleeding time. The normalization of these hemostatic parameters persisted for four hours. Over the same time period there was a marked increase in the quantity of the vWF multimers when blood was collected in the presence of protease inhibitors. The vWF multimers present were even larger than the normal. When blood was collected in the absence of protease inhibitors, a smaller increase in the plasma vWF multimers was observed and fewer of the intermediate and larger vWF multimers were seen; multimers larger than those present in normal plasma were not visualized. The platelet vWF multimers and activities did not change with or without inhibitors. These studies suggest that there is a subgroup of patients with type IIa vWD who respond to DDAVP with complete normalization of their hemostatic abnormalities and whose vWF is sensitive to proteolysis.


Blood ◽  
1982 ◽  
Vol 59 (6) ◽  
pp. 1272-1278 ◽  
Author(s):  
ZM Ruggeri ◽  
PM Mannucci ◽  
R Lombardi ◽  
AB Federici ◽  
TS Zimmerman

Abstract We have studied the modifications in the multimeric composition of plasma factor VIII/von Willebrand factor and the bleeding time response following administration of 1-Deamino-[8-D-arginine]-Vasopressin (DDAVP) to patients with different subtypes of von Willebrand's disease. In type I, all multimers were present in plasma in the resting state, though they were decreased in concentration. Administration of DDAVP resulted in an increased concentration of these forms as well as the appearance of larger forms than were previously present. There was concomitant correction of the bleeding time. In type IIA, large multimers were absent in the resting state, and although DDAVP induced an average threefold increase in the plasma concentration of factor VIII/von Willebrand factor, the larger multimers did not appear and the bleeding time, although shortened, was not corrected. In contrast, the larger multimers that were also absent from type IIB plasma in the resting state rapidly appeared following DDAVP administration. However, their appearance was transitory and the bleeding time, as in IIA patients, was shortened but not corrected. The characteristic multimeric composition of platelet factor VIII/von Willebrand factor in given subtypes predicted the alteration in plasma factor VIII/von Willebrand factor induced by DDAVP. These studies provide evidence that the different subtypes of von Willebrand's disease represent distinct abnormalities of factor VIII/von Willebrand factor. They also suggest that complete hemostatic correction following DDAVP can be routinely expected only in type I von Willebrand's disease, and only if factor VIII/von Willebrand factor can be raised to normal levels.


1977 ◽  
Author(s):  
J. A. Guisasola ◽  
C. Cockburn ◽  
R. M. Hardisty

Purified human factor VIII was incubated for up to 24 hours with plasmin, and the activity of the breakdown products studied at intervals. Factor VIII coagulant activity was lost within the first hour, but von Willebrand factor activity (FVIIIR:WF) was retained for two hours, and then declined slowly during the subsequent incubation. Analysis of the 24-hour breakdown products by immuno-electrophoresis, sepharose 4B chromatography and SDS Polyacrylamide electrophoresis revealed three main groups of fragments recognised by rabbit anti-human factor VIII anti-serum, and having molecular weights in the following ranges: Group 1 300,000=500,000; Group II, 150–200,000; Group III, 100,000. FVIIIR:WF activity, which was found only in Group II, appeared to be associated with glycopeptide(s) of up to 155,000 daltons.


Sign in / Sign up

Export Citation Format

Share Document