scholarly journals Leucine Oxidation and Protein Turnover in Clofibrate-induced Muscle Protein Degradation in Rats

1980 ◽  
Vol 65 (6) ◽  
pp. 1285-1293 ◽  
Author(s):  
Harbhajan S. Paul ◽  
Siamak A. Adibi
1997 ◽  
Vol 273 (6) ◽  
pp. E1149-E1157 ◽  
Author(s):  
Violeta Botbol ◽  
Oscar A. Scornik

Bestatin, an aminopeptidase inhibitor, permits the degradation of cellular proteins to di- and tripeptides but interferes with the further breakdown of these peptides to amino acids. We propose to measure instant rates of protein degradation in skeletal muscles of intact mice by the accumulation of bestatin-induced intermediates. Muscle protein was labeled by injection ofl-[guanidino-14C]arginine; 3 days later, maximum accumulation of intermediates was measured in abdominal wall muscles 10 min after the intravenous injection of 5 mg of bestatin. The peptides were partially purified and hydrolyzed in 6 N HCl, and the radioactivity in peptide-derived arginine was determined, after conversion to14CO2by treatment with arginase and urease. The measurement of bestatin-induced intermediates provides a unique tool for studying acute changes in muscle protein turnover in live mice. We observed a 62% increase in muscle protein breakdown after a 16-h fast, which was reversed by refeeding for 3.5 h, and a 38% increase after 3 days of protein depletion.


Author(s):  
Yusuke Nishimura ◽  
Ibrahim Musa ◽  
Lars Holm ◽  
Yu-Chiang Lai

Skeletal muscle protein turnover plays a crucial role in controlling muscle mass and protein quality control, including sarcomeric (structural and contractile) proteins. Protein turnover is a dynamic and continual process of protein synthesis and degradation. The ubiquitin proteasome system (UPS) is a key degradative system for protein degradation and protein quality control in skeletal muscle. UPS-mediated protein quality control is known to be impaired in ageing and diseases. Exercise is a well-recognized non-pharmacological approach to promote muscle protein turnover rates. Over the past decades, we have acquired substantial knowledge of molecular mechanisms of muscle protein synthesis after exercise. However, there has been considerable gaps in the mechanisms of how muscle protein degradation is regulated at the molecular level. The main challenge to understand muscle protein degradation is due in part to the lack of solid stable isotope tracer methodology to measure muscle protein degradation rate. Understanding the mechanisms of UPS with the concomitant measurement of protein degradation rate in skeletal muscle will help identify novel therapeutic strategies to ameliorate impaired protein turnover and protein quality control in ageing and diseases. Thus, the goal of this present review is to highlight how recent advances in the field may help improve our understanding of exercise-mediated protein degradation. We discuss 1) the emerging roles of protein phosphorylation and ubiquitylation modifications in regulating proteasome-mediated protein degradation after exercise and 2) methodological advances to measure in vivo myofibrillar protein degradation rate using stable isotope tracer methods.


2018 ◽  
Vol 9 (2) ◽  
pp. 871-879 ◽  
Author(s):  
Shu-Ting Chan ◽  
Cheng-Hung Chuang ◽  
Yi-Chin Lin ◽  
Jiunn-Wang Liao ◽  
Chong-Kuei Lii ◽  
...  

Quercetin prevents TSA-induced muscle wasting by down-regulating FOXO1 mediated muscle protein degradation.


2006 ◽  
Vol 18 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
Steven T. Russell ◽  
Stacey M. Wyke ◽  
Michael J. Tisdale

1983 ◽  
Vol 212 (3) ◽  
pp. 649-653 ◽  
Author(s):  
A S Clark ◽  
W E Mitch

Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.


Sign in / Sign up

Export Citation Format

Share Document