scholarly journals Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance.

1994 ◽  
Vol 93 (3) ◽  
pp. 1156-1162 ◽  
Author(s):  
J Kusari ◽  
K A Kenner ◽  
K I Suh ◽  
D E Hill ◽  
R R Henry
Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4581-4588 ◽  
Author(s):  
Sébastien Bergeron ◽  
Marie-Julie Dubois ◽  
Kerstin Bellmann ◽  
Michael Schwab ◽  
Nancy Larochelle ◽  
...  

The protein tyrosine phosphatase (PTPase) Src-homology 2-domain-containing phosphatase (SHP)-1 was recently reported to be a novel regulator of insulin's metabolic action. In order to examine the role of this PTPase in skeletal muscle, we used adenovirus (AdV)-mediated gene transfer to express an interfering mutant of SHP-1 [dominant negative (DN)SHP-1; mutation C453S] in L6 myocytes. Expression of DNSHP-1 increased insulin-induced Akt serine-threonine kinase phosphorylation and augmented glucose uptake and glycogen synthesis. Pharmacological inhibition of glucose transporter type 4 (GLUT4) activity using indinavir and GLUT4 translocation assays revealed an important role for this transporter in the increased insulin-induced glucose uptake in DNSHP-1-expressing myocytes. Both GLUT4 mRNA and protein expression were also found to be increased by DNSHP-1 expression. Furthermore, AdV-mediated delivery of DNSHP-1 in skeletal muscle of transgenic mice overexpressing Coxsackie and AdV receptor also enhanced GLUT4 protein expression. Together, these findings confirm that SHP-1 regulates muscle insulin action in a cell-autonomous manner and further suggest that the PTPase negatively modulates insulin action through down-regulation of both insulin signaling to Akt and GLUT4 translocation, as well as GLUT4 expression.


2013 ◽  
Vol 110 (4) ◽  
pp. 671-680 ◽  
Author(s):  
Hong-Kui Wei ◽  
Yuanfei Zhou ◽  
Shuzhong Jiang ◽  
Ya-Xiong Tao ◽  
Haiqing Sun ◽  
...  

Dietary n-3 PUFA have been demonstrated to promote muscle growth in growing animals. In the present study, fractional protein synthesis rates (FSR) in the skeletal muscle of growing pigs fed a DHA-enriched (DE) diet (DE treatment) or a soyabean oil (SO) diet (SO treatment) were evaluated in the fed and feed-deprived states. Feeding-induced increases in muscle FSR, as well as the activation of the mammalian target of rapamycin and protein kinase B, were higher in the DE treatment as indicated by the positive interaction between diet and feeding. In the fed state, the activation of eIF4E-binding protein 1 in the skeletal muscle of pigs on the DE diet was higher than that in pigs on the SO diet (P <0·05). Feeding the DE diet increased muscle insulin-like growth factor 1 (IGF-1) expression (P <0·05) and insulin action (as demonstrated by increased insulin receptor (IR) phosphorylation, P <0·05), resulting in increased IR substrate 1 activation in the fed state. However, no difference in plasma IGF-1 concentration or hepatic IGF-1 expression between the two treatments was associated. The increased IGF-1 expression in the DE treatment was associated with increased mRNA expression of the signal transducer and activator of transcription 5A and decreased mRNA expression of protein tyrosine phosphatase, non-receptor type 3 in skeletal muscle. Moreover, mRNA expression of protein tyrosine phosphatase, non-receptor type 1 (PTPN1), the activation of PTPN1 and the activation of NF-κB in muscle were significantly lower in the DE treatment (P <0·05). The results of the present study suggest that feeding a DE diet increased feeding-induced muscle protein synthesis in growing pigs, and muscle IGF-1 expression and insulin action were involved in this action.


1997 ◽  
Vol 25 (4) ◽  
pp. S620-S620
Author(s):  
Graeme J. Smith ◽  
Heather R. Foster ◽  
Jon P. Orme ◽  
Brian R. Holloway ◽  
Paul R. Whittamore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document