Daily High-Resolution-Blended Analyses for Sea Surface Temperature

2007 ◽  
Vol 20 (22) ◽  
pp. 5473-5496 ◽  
Author(s):  
Richard W. Reynolds ◽  
Thomas M. Smith ◽  
Chunying Liu ◽  
Dudley B. Chelton ◽  
Kenneth S. Casey ◽  
...  

Abstract Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.

Ocean Science ◽  
2012 ◽  
Vol 8 (5) ◽  
pp. 845-857 ◽  
Author(s):  
S. Guinehut ◽  
A.-L. Dhomps ◽  
G. Larnicol ◽  
P.-Y. Le Traon

Abstract. This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr) are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method) further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to describe qualitatively the temperature variability patterns for the period from 1993 to 2009.


2020 ◽  
Vol 12 (7) ◽  
pp. 1140
Author(s):  
Dimitrios N. Androulakis ◽  
Andrew Clive Banks ◽  
Costas Dounas ◽  
Dionissios P. Margaris

The coastal ocean is one of the most important environments on our planet, home to some of the most bio-diverse and productive ecosystems and providing key input to the livelihood of the majority of human society. It is also a highly dynamic and sensitive environment, particularly susceptible to damage from anthropogenic influences such as pollution and over-exploitation as well as the effects of climate change. These have the added potential to exacerbate other anthropogenic effects and the recent change in sea temperature can be considered as the most pervasive and severe cause of impact in coastal ecosystems worldwide. In addition to open ocean measurements, satellite observations of sea surface temperature (SST) have the potential to provide accurate synoptic coverage of this essential climate variable for the near-shore coastal ocean. However, this potential has not been fully realized, mainly because of a lack of reliable in situ validation data, and the contamination of near-shore measurements by the land. The underwater biotechnological park of Crete (UBPC) has been taking near surface temperature readings autonomously since 2014. Therefore, this study investigated the potential for this infrastructure to be used to validate SST measurements of the near-shore coastal ocean. A comparison between in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra SST data is presented for a four year (2014–2018) in situ time series recorded from the UBPC. For matchups between in situ and satellite SST data, only nighttime in situ extrapolated to the sea surface (SSTskin) data within ±1 h from the satellite’s overpass are selected and averaged. A close correlation between the in situ data and the MODIS SST was found (squared Pearson correlation coefficient-r2 > 0.9689, mean absolute error-Δ < 0.51 both for Aqua and Terra products). Moreover, close correlation was found between the satellite data and their adjacent satellite pixel’s data further from the shore (r2 > 0.9945, Δ < 0.23 for both Aqua and Terra products, daytime and nighttime satellite SST). However, there was also a consistent positive systematic difference in the satellite against satellite mean biases indicating a thermal adjacency effect from the land (e.g., mean bias between daytime Aqua satellite SST from the UBPC cell minus the respective adjacent cell’s data is δ = 0.02). Nevertheless, if improvements are made in the in situ sensors and their calibration and uncertainty evaluation, these initial results indicate that near-shore autonomous coastal underwater temperature arrays, such as the one at UBPC, could in the future provide valuable in situ data for the validation of satellite coastal SST measurements.


2012 ◽  
Vol 9 (2) ◽  
pp. 1313-1347 ◽  
Author(s):  
S. Guinehut ◽  
A.-L. Dhomps ◽  
G. Larnicol ◽  
P.-Y. Le Traon

Abstract. This paper describes an observation-based approach that combines efficiently the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 years) are merged with the lower accuracy but high-resolution synthetic data derived from altimeter and sea surface temperature satellite observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations and salinity fields from altimeter observations through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolution of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50 % of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30 % of the signal can be reconstructed from altimeter observations, making the in situ observing system mandatory for salinity estimates. The in situ observations (step 2 of the method) reduce additionally the error by up to 20 % for the temperature field in the mixed layer and the main contribution is for salinity and the near surface layer with an improvement up to 30 %. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to qualitatively describe the temperature variability patterns for the 1993 to 2009 time period.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Bambang Sukresno ◽  
Dinarika Jatisworo ◽  
Rizki Hanintyo

Sea surface temperature (SST) is an important variable in oceanography. One of the SST data can be obtained from the Global Observation Mission-Climate (GCOM-C) satellite. Therefore, this data needs to be validated before being applied in various fields. This study aimed to validate SST data from the GCOM-C satellite in the Indonesian Seas. Validation was performed using the data of Multi-sensor Ultra-high Resolution sea surface temperature (MUR-SST) and in situ sea surface temperature Quality Monitor (iQuam). The data used are the daily GCOM-C SST dataset from January to December 2018, as well as the daily dataset from MUR-SST and iQuam in the same period. The validation process was carried out using the three-way error analysis method. The results showed that the accuracy of the GCOM-C SST was 0.37oC.


Author(s):  
M. A. Syariz ◽  
L. M. Jaelani ◽  
L. Subehi ◽  
A. Pamungkas ◽  
E. S. Koenhardono ◽  
...  

The Sea Surface Temperature (SST) retrieval from satellites data Thus, it could provide SST data for a long time. Since, the algorithms of SST estimation by using Landsat 8 Thermal Band are sitedependence, we need to develop an applicable algorithm in Indonesian water. The aim of this research was to develop SST algorithms in the North Java Island Water. The data used are in-situ data measured on April 22, 2015 and also estimated brightness temperature data from Landsat 8 Thermal Band Image (band 10 and band 11). The algorithm was established using 45 data by assessing the relation of measured in-situ data and estimated brightness temperature. Then, the algorithm was validated by using another 40 points. The results showed that the good performance of the sea surface temperature algorithm with coefficient of determination (<i>R</i><sup>2</sup>) and Root Mean Square Error (<i>RMSE</i>) of 0.912 and 0.028, respectively.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


2006 ◽  
Vol 23 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Huai-Min Zhang ◽  
Richard W. Reynolds ◽  
Thomas M. Smith

Abstract A method is presented to evaluate the adequacy of the recent in situ network for climate sea surface temperature (SST) analyses using both in situ and satellite observations. Satellite observations provide superior spatiotemporal coverage, but with biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy operational Advanced Very High Resolution Radiometer (AVHRR) satellite SST biases were analyzed to extract typical bias patterns and scales. Occasional biases of 2°C were found during large volcano eruptions and near the end of the satellite instruments’ lifetime. Because future biases could not be predicted, the in situ network was designed to reduce the large biases that have occurred to a required accuracy. Simulations with different buoy density were used to examine their ability to correct the satellite biases and to define the residual bias as a potential satellite bias error (PSBE). The PSBE and buoy density (BD) relationship was found to be nearly exponential, resulting in an optimal BD range of 2–3 per 10° × 10° box for efficient PSBE reduction. A BD of two buoys per 10° × 10° box reduces a 2°C maximum bias to below 0.5°C and reduces a 1°C maximum bias to about 0.3°C. The present in situ SST observing system was evaluated to define an equivalent buoy density (EBD), allowing ships to be used along with buoys according to their random errors. Seasonally averaged monthly EBD maps were computed to determine where additional buoys are needed for future deployments. Additionally, a PSBE was computed from the present EBD to assess the in situ system’s adequacy to remove potential future satellite biases.


2016 ◽  
Vol 38 ◽  
pp. 11
Author(s):  
Alcimoni Nelci Comin ◽  
Otávio Costa Acevedo

The in situ data of sea surface temperature (SST) were measured onboard the Polar Ship Almirante Maximiano in the southern Shetland Islands between 5 and 23 February 2011. For the simulations, three concentric nested grids have been used at the 9 km, 3 km and 1 km spatial resolution in the simulations of the skin sea surface temperature (SSST) with WRF model. The grids are displaced every day, always centered in the middle position of the ship (latitude/longitude) during transect. The SSST is underestimated in comparison with SST on average 1.5°C. The real average wind speed observed was 8.7 ms-1. Therefore the amount of mixing between SST and SSST is greater, and the temperature difference between the two layers is smaller, on average 0.5°C. The underestimation of the model is mean 1°C. This underestimation directly interfere on the amount of ocean evaporation for the atmosphere, which may cause error in the energy balance. The correlation of the SSST with real SST data was 0.84 and root mean square error 1.87. 


Sign in / Sign up

Export Citation Format

Share Document