scholarly journals Is the Upper Ocean Warming? Comparisons of 50-Year Trends from Different Analyses*

2008 ◽  
Vol 21 (10) ◽  
pp. 2259-2268 ◽  
Author(s):  
Mark Carson ◽  
D. E. Harrison

Abstract There is great interest in World Ocean temperature trends, yet the historical global ocean database has very uneven coverage in space and time. Previous work on 50-yr upper ocean temperature trends from the NOAA ocean data archive is extended here. Trends at depths from 50 to 1000 m are examined, based on observations gridded over larger regions than in the earlier study. Despite the use of larger grid boxes, most of the ocean does not have significant 50-yr trends at the 90% confidence level (CL). In fact only 30% of the ocean at 50 m has 90% CL trends, and the percentage decreases significantly with increasing depth. As noted in the previous study, there is much spatial structure in 50-yr trends, with areas of strong warming and strong cooling. These trend results are compared with trends calculated from data interpolated to standard levels and from a highly horizontally interpolated version of the dataset that has been used in previous heat content trend studies. The regional trend results can differ substantially, even in the areas with statistically significant trends. Trends based on the more interpolated analyses show more warming. Together with major temporal and spatial sampling limitations, the previously described strong interdecadal and spatial variability of trends makes it very difficult to formally estimate uncertainty in World Ocean averages, but these results suggest that upper ocean heat content integrals and integral trends may be substantially more uncertain than has yet been acknowledged. Further exploration of uncertainties is needed.

2007 ◽  
Vol 37 (2) ◽  
pp. 174-187 ◽  
Author(s):  
D. E. Harrison ◽  
Mark Carson

Abstract Subsurface temperature trends in the better-sampled parts of the World Ocean are reported. Where there are sufficient observations for this analysis, there is large spatial variability of 51-yr trends in the upper ocean, with some regions showing cooling in excess of 3°C, and others warming of similar magnitude. Some 95% of the ocean area analyzed has both cooled and warmed over 20-yr subsets of this period. There is much space and time variability of 20-yr running trend estimates, indicating that trends over a decade or two may not be representative of longer-term trends. Results are based on sorting individual observations in World Ocean Database 2001 into 1° × 1° and 2° × 2° bins. Only bins with at least five observations per decade for four of the five decades since 1950 are used. Much of the World Ocean cannot be examined from this perspective. The 51-yr trends significant at the 90% level are given particular attention. Results are presented for depths of 100, 300, and 500 m. The patterns of the 90% significant trends are spatially coherent on scales resolved by the bin size. The vertical structure of the trends is coherent in some regions, but changes sign between the analysis depths in a number of others. It is suggested that additional attention should be given to uncertainty estimates for basin average and World Ocean average thermal trends.


2020 ◽  
Vol 10 (22) ◽  
pp. 8185
Author(s):  
Peter C. Chu ◽  
Chenwu Fan

This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer. The isothermal layer heat content with the monthly climatology removed (i.e., relative isothermal layer heat content) is calculated for an individual observed temperature profile from three open datasets. The calculated 1,111,647 pairs of (thermocline gradient, relative isothermal layer heat content) worldwide show long-term decreasing of the thermocline gradient and increasing of isothermal layer heat content in the global as well as regional oceans. The global ocean thermocline weakening rate is (−2.11 ± 0.31) × 10−3 (°C m−1 yr−1) and isothermal layer warming rate is (0.142 ± 0.014) (W m−2).


2018 ◽  
Vol 115 (45) ◽  
pp. 11460-11464 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Alessio Bellucci ◽  
Andrea Storto ◽  
Silvio Gualdi ◽  
Simona Masina ◽  
...  

Predicting North Atlantic hurricane activity months in advance is of great potential societal significance. The ocean temperature, both in terms of North Atlantic/tropical averages and upper ocean heat content, is demonstrated to be a significant predictor. To investigate the relationship between the thermal state of the Atlantic Ocean and the tropical cyclone (TC) activity in terms of accumulated cyclone energy (ACE), we use observed 1980–2015 TC records and a 1/4° resolution global ocean reanalysis. This paper highlights the nonlocal effect associated with eastern Atlantic Ocean temperature, via a reduction of wind shear, and provides additional predictive skill of TC activity, when considering subsurface temperature instead of sea surface temperature (SST) only. The most active TC seasons occur for lower than normal wind shear conditions over the main development region, which is also driven by reduced trade wind strength. A significant step toward operationally reliable TC activity predictions is gained after including upper ocean mean temperatures over the eastern Atlantic domain. Remote effects are found to provide potential skill of ACE up to 3 months in advance. These results indicate that consideration of the upper 40-m ocean average temperature improves upon a prediction of September Atlantic hurricane activity using only SST.


2014 ◽  
Vol 27 (5) ◽  
pp. 1945-1957 ◽  
Author(s):  
John M. Lyman ◽  
Gregory C. Johnson

Abstract Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.


2017 ◽  
Vol 74 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Junqiao Feng ◽  
Fei-fei Jin ◽  
Dunxin Hu ◽  
Shoude Guan

Sign in / Sign up

Export Citation Format

Share Document