scholarly journals Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study

2008 ◽  
Vol 136 (2) ◽  
pp. 522-540 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang

Abstract The feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation has been demonstrated in the authors’ recent studies via observing system simulation experiments (OSSEs) both under a perfect-model assumption and in the presence of significant model error. The current study extends the EnKF to assimilate real-data observations for a warm-season mesoscale convective vortex (MCV) event on 10–12 June 2003. Direct comparison between the EnKF and a three-dimensional variational data assimilation (3DVAR) system, both implemented in the Weather Research and Forecasting model (WRF), is carried out. It is found that the EnKF consistently performs better than the 3DVAR method by assimilating either individual or multiple data sources (i.e., sounding, surface, and wind profiler) for this MCV event. Background error covariance plays an important role in the performance of both the EnKF and the 3DVAR system. Proper covariance inflation and the use of different combinations of physical parameterization schemes in different ensemble members (the so-called multischeme ensemble) can significantly improve the EnKF performance. The 3DVAR system can benefit substantially from using short-term ensembles to improve the prior estimate (with the ensemble mean). Noticeable improvement is also achieved by including some flow dependence in the background error covariance of 3DVAR.

2007 ◽  
Vol 135 (4) ◽  
pp. 1403-1423 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang

Abstract In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation through various observing system simulation experiments was demonstrated assuming a perfect forecast model for a winter snowstorm event that occurred on 24–26 January 2000. The current study seeks to explore the performance of the EnKF for the same event in the presence of significant model errors due to physical parameterizations by assimilating synthetic sounding and surface observations with typical temporal and spatial resolutions. The EnKF performance with imperfect models is also examined for a warm-season mesoscale convective vortex (MCV) event that occurred on 10–13 June 2003. The significance of model error in both warm- and cold-season events is demonstrated when the use of different cumulus parameterization schemes within different ensembles results in significantly different forecasts in terms of both ensemble mean and spread. Nevertheless, the EnKF performed reasonably well in most experiments with the imperfect model assumption (though its performance can sometimes be significantly degraded). As in Part I, where the perfect model assumption was utilized, most analysis error reduction comes from larger scales. Results show that using a combination of different physical parameterization schemes in the ensemble forecast can significantly improve filter performance. A multischeme ensemble has the potential to provide better background error covariance estimation and a smaller ensemble bias. There are noticeable differences in the performance of the EnKF for different flow regimes. In the imperfect scenarios considered, the improvement over the reference ensembles (pure ensemble forecasts without data assimilation) after 24 h of assimilation for the winter snowstorm event ranges from 36% to 67%. This is higher than the 26%–45% improvement noted after 36 h of assimilation for the warm-season MCV event. Scale- and flow-dependent error growth dynamics and predictability are possible causes for the differences in improvement. Compared to the power spectrum analyses for the snowstorm, it is found that forecast errors and ensemble spreads in the warm-season MCV event have relatively smaller power at larger scales and an overall smaller growth rate.


2008 ◽  
Vol 136 (10) ◽  
pp. 3671-3682 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang

In previous works in this series study, an ensemble Kalman filter (EnKF) was demonstrated to be promising for mesoscale and regional-scale data assimilation in increasingly realistic environments. Parts I and II examined the performance of the EnKF by assimilating simulated observations under both perfect- and imperfect-model assumptions. Part III explored the application of the EnKF to a real-data case study in comparison to a three-dimensional variational data assimilation (3DVAR) method in the Weather Research and Forecasting (WRF) model. The current study extends the single-case real-data experiments over a period of 1 month to examine the long-term performance and comparison of both methods at the regional scales. It is found that the EnKF systematically outperforms 3DVAR for the 1-month period of interest in which both methods assimilate the same standard rawinsonde observations every 12 h over the central United States. Consistent with results from the real-data case study of Part III, the EnKF can benefit from using a multischeme ensemble that partially accounts for model errors in physical parameterizations. The benefit of using a multischeme ensemble (over a single-scheme ensemble) is more pronounced in the thermodynamic variables (including temperature and moisture) than in the wind fields. On average, the EnKF analyses lead to more accurate forecasts than the 3DVAR analyses when they are used to initialize 60 consecutive, deterministic 60-h forecast experiments for the month. Results also show that deterministic forecasts of up to 60 h initiated from the EnKF analyses consistently outperform the WRF forecasts initiated from the National Centers for Environmental Prediction final analysis field of the Global Forecast System.


2011 ◽  
Vol 139 (11) ◽  
pp. 3389-3404 ◽  
Author(s):  
Thomas Milewski ◽  
Michel S. Bourqui

Abstract A new stratospheric chemical–dynamical data assimilation system was developed, based upon an ensemble Kalman filter coupled with a Chemistry–Climate Model [i.e., the intermediate-complexity general circulation model Fast Stratospheric Ozone Chemistry (IGCM-FASTOC)], with the aim to explore the potential of chemical–dynamical coupling in stratospheric data assimilation. The system is introduced here in a context of a perfect-model, Observing System Simulation Experiment. The system is found to be sensitive to localization parameters, and in the case of temperature (ozone), assimilation yields its best performance with horizontal and vertical decorrelation lengths of 14 000 km (5600 km) and 70 km (14 km). With these localization parameters, the observation space background-error covariance matrix is underinflated by only 5.9% (overinflated by 2.1%) and the observation-error covariance matrix by only 1.6% (0.5%), which makes artificial inflation unnecessary. Using optimal localization parameters, the skills of the system in constraining the ensemble-average analysis error with respect to the true state is tested when assimilating synthetic Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) retrievals of temperature alone and ozone alone. It is found that in most cases background-error covariances produced from ensemble statistics are able to usefully propagate information from the observed variable to other ones. Chemical–dynamical covariances, and in particular ozone–wind covariances, are essential in constraining the dynamical fields when assimilating ozone only, as the radiation in the stratosphere is too slow to transfer ozone analysis increments to the temperature field over the 24-h forecast window. Conversely, when assimilating temperature, the chemical–dynamical covariances are also found to help constrain the ozone field, though to a much lower extent. The uncertainty in forecast/analysis, as defined by the variability in the ensemble, is large compared to the analysis error, which likely indicates some amount of noise in the covariance terms, while also reducing the risk of filter divergence.


2013 ◽  
Vol 141 (8) ◽  
pp. 2721-2739 ◽  
Author(s):  
Chengsi Liu ◽  
Qingnong Xiao

Abstract A four-dimensional ensemble-based variational data assimilation (4DEnVar) algorithm proposed in Part I of the 4DEnVar series (denoted En4DVar in Part I, but here we refer to it as 4DEnVar according to WMO conference recommendation to differentiate it from En4DVar algorithm using adjoint model) uses a flow-dependent background error covariance calculated from ensemble forecasts and performs 4DVar optimization based on an incremental approach and a preconditioning algorithm. In Part II, the authors evaluated 4DEnVar with observing system simulation experiments (OSSEs) using the Advanced Research Weather Research and Forecasting Model (ARW-WRF, hereafter WRF). The current study extends the 4DEnVar to assimilate real observations for a cyclone in the Antarctic and the Southern Ocean in October 2007. The authors performed an intercomparison of four different WRF variational approaches for the case, including three-dimensional variational data assimilation (3DVar), first guess at the appropriate time (FGAT), and ensemble-based three-dimensional (En3DVar) and four-dimensional (4DEnVar) variational data assimilations. It is found that all data assimilation approaches produce positive impacts in this case. Applying the flow-dependent background error covariance in En3DVar and 4DEnVar yields forecast skills superior to those with the homogeneous and isotropic background error covariance in 3DVar and FGAT. In addition, the authors carried out FGAT and 4DEnVar 3-day cycling and 72-h forecasts. The results show that 4DEnVar produces a better performance in the cyclone prediction. The inflation factor on 4DEnVar can effectively improve the 4DEnVar analysis. The authors also conducted a short period (10-day lifetime of the cyclone in the domain) of analysis/forecast intercomparison experiments using 4DEnVar, FGAT, and 3DVar. The 4DEnVar scheme demonstrates overall superior and robust performance.


2006 ◽  
Vol 134 (2) ◽  
pp. 722-736 ◽  
Author(s):  
Fuqing Zhang ◽  
Zhiyong Meng ◽  
Altug Aksoy

Abstract Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-scale dynamics. It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial resolutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimilation) for both observed and unobserved variables including zonal and meridional winds, temperature, and pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged root-mean-square error after 24-h assimilation is ∼1.0–1.5 m s−1 for winds and ∼1.0 K for temperature, which is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is likely the case when real observations are assimilated.


2013 ◽  
Vol 6 (2) ◽  
pp. 3033-3083
Author(s):  
B. Gaubert ◽  
A. Coman ◽  
G. Foret ◽  
F. Meleux ◽  
A. Ung ◽  
...  

Abstract. The Ensemble Kalman Filter is an efficient algorithm for data assimilation; it allows for an estimation of forecast and analysis error by updating the model error covariance matrices at the analysis step. This algorithm has been coupled to the CHIMERE chemical transport model in order to assimilate ozone ground measurements at the regional scale. The analyzed ozone field is evaluated using a consistent set of observations and shows a reduction of the quadratic error by about a third and an improvement of the hourly correlation coefficient despite of a low ensemble size designed for operational purposes. A classification of the European observation network is derived from the ozone temporal variability in order to qualitatively determine the observation spatial representativeness. Then, an estimation of the temporal behavior of both model and observations error variances of the assimilated stations is checked using a posteriori Desroziers diagnostics. The amplitude of the additive noise applied to the ozone fields can be diagnosed and tuned online. The evaluation of the obtained background error variance distribution through the Reduced Centered Random Variable standard deviation shows improved statistics. The use of the diagnostics indicates a strong diurnal cycle of both the model and the representativeness errors. Another design of the ensemble is constructed by perturbing model parameter, but does not allow creating enough variability if used solely. Finally, the overall filter performance over evaluation stations is found to be relatively unaffected by different formulations of observation and simulation errors.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2014 ◽  
Vol 919-921 ◽  
pp. 1257-1261
Author(s):  
Chao Qun Tan ◽  
Ju Xiu Tong ◽  
Bill X. Hu ◽  
Jin Zhong Yang

This paper mainly discusses some details when applying data assimilation method via an ensemble Kalman filter (EnKF) to improve prediction of adsorptive solute Cr(VI) transfer from soil into runoff. Based on this work, we could make better use of our theoretical model to predict adsorptive solute transfer from soil into surface runoff in practice. The results show that the ensemble number of 100 is reasonable, considering assimilation effect and efficiency after selecting its number from 25 to 225 at an interval of 25. While the initial ensemble value makes little difference to data assimilation (DA) results. Besides, DA results could be improved by multiplying an amplification factor to forecast error covariance matrix due to underestimation of forecast error.


Sign in / Sign up

Export Citation Format

Share Document