The Late Fall Extratropical Response to ENSO: Sensitivity to Coupling and Convection in the Tropical West Pacific

2008 ◽  
Vol 21 (23) ◽  
pp. 6101-6118 ◽  
Author(s):  
Ileana Bladé ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
James D. Scott

Abstract The extratropical response to El Niño in late fall departs considerably from the canonical El Niño signal. Observational analysis suggests that this response is modulated by anomalous forcing in the tropical west Pacific (TWP), so that a strong fall El Niño teleconnection is more likely when warm SST conditions and/or enhanced convection prevail in the TWP. While these TWP SST anomalies may arise from noise and/or long-term variability, they may also be generated by differences between El Niño events, through variations in the tropical “atmospheric bridge.” This bridge typically drives subsidence west of the date line and enhanced trade winds over the far TWP, which cool the ocean. In late fall, however, some relatively weaker and/or more eastward-shifted El Niño events produce a correspondingly weakened and displaced tropical bridge, which results in no surface cooling and enhanced convection in the TWP. Because the North Pacific circulation is very sensitive to forcing from the TWP at this time of year, the final outcome is a strong extratropical El Niño teleconnection. This hypothesis is partly supported by regionally coupled ensemble GCM simulations for the 1950–99 period, in which prescribed observed El Niño SST anomalies in the eastern/central equatorial Pacific and an oceanic mixed layer model elsewhere coexist, so that the TWP is allowed to interact with the El Niño atmospheric bridge. To separate the deterministic signal driven by TWP coupling from that associated with inter–El Niño differences and from the “noise” due to intrinsic TWP convection variability (not induced by local SST anomalies), a second large-ensemble (100) simulation of the 1997/98 El Niño event, with coupling limited to the TWP and tropical Indian Ocean, is carried out. Together, the model findings suggest that the extratropical El Niño teleconnection during late fall is very sensitive to convective forcing in the TWP and that coupling-induced warming in the TWP may enhance this El Niño teleconnection by promoting convection in this critical TWP region. A more general implication is that diagnostic studies using December–February (DJF) seasonal averages may obscure some important aspects of climate anomalies associated with forcing in the tropical Pacific.

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1135
Author(s):  
Yujie Liu ◽  
Shuang Li

This paper discovers a spatial feature of interannual sea surface temperature (SST) anomalies over the South China Sea (SCS) in the boreal spring, based on the Simple Ocean Data Assimilation (SODA) monthly data in the period from January 1958 to December 2010. The Empirical Orthogonal Function (EOF) analysis of interannual SST anomalies shows a north–south discrepant pattern of the first mode, which is characterized by higher (lower) anomalies in the northern (southern) SCS and possessing seasonal phase locking (in the boreal spring). Besides, the high correlation coefficient between the time series of the first EOF mode and the Nino 3 SST anomalies during winter reveals that this discrepant pattern is likely caused by El Niño events. The composites of SST anomalies show that this discrepant pattern appears in the eastern Pacific (EP) El Niño events, while it does not exist in the Central Pacific (CP) El Niño events. It is believed that the western North Pacific anticyclone (WNPA) plays a key role in conveying the El Niño impact on the interannual variabilities of SCS SST in the EP El Niño events. The anomalous anticyclone in the Philippine Sea weakens the northeasterly monsoon over the SCS by its southwest portion during the mature phases of the EP El Niño events. This anomalous atmospheric circulation contributes to the north–south discrepant pattern of the wind stress anomalies over the SCS in the EP El Niño mature winters, and then leads to the north–south dipole pattern of the contemporaneous latent heat flux anomalies. The latent heat flux is a major contributor to the surface net heat flux, and heat budget analysis shows that the net heat flux is the major contributor to the SCS SST anomalies during the spring for the EP El Niño events, and the north–south discrepancy of SCS SST anomalies in the succeeding spring is ultimately formed.


2021 ◽  
pp. 1-60

Abstract The present study investigated impacts of strong and weak El Niño events on Central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance Central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over Central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and Arabian Sea to Central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over Central Asia in the mature winter and decaying spring. The El Niño events induced Central Asian precipitation anomalies are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn, contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of Central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.


2018 ◽  
Author(s):  
Violaine Piton ◽  
Thierry Delcroix

Abstract. We present a short overview of the long-term mean and variability of five Essential Climate Variables observed in the South China Sea over the last 3 decades, including sea surface temperature (SST), sea level anomaly (SLA), precipitation (P), surface wind and water discharge (WD) from the Mekong and Red Rivers. At the seasonal time scale, SST and SLAs increase in the summer (up to 4.2 °C and 14 cm, respectively), and P increases in the north. The summer zonal and meridional winds reverse and intensify (mostly over the ocean), and the WD shows positive anomalies. At the interannual time scale, each variable appears to be correlated with El Niño Southern Oscillation (ENSO) indices. Eastern Pacific El Niño events produce basin-wide SST warming (up to 1.4 °C) with a 6-month lag. The SLAs fall basin-wide (by up to 9 cm) during an El Niño event (all types), with a 3-month lag. The zonal and meridional winds strengthen (up to 4 m/s) in the north (weaken in the south) during all types of El Niño events, with a 3–5-month lag. A rainfall deficit of approximately 30 % of the mean occurs during all types of El Niño phases. The Mekong River WD is reduced by 1/3 of the mean 7–8 months after all types of El Niño events. We also show increasing trends of SST as high as 0.24 °C/decade and SLAs by 41 mm/decade. Increasing trends are observed for zonal wind, which is possibly linked to the phase of the Pacific Decadal Oscillation, and decreasing trends are observed for P in the north and both WD stations that were analyzed. The likely driving mechanisms and some of the relationships between all observed anomalies are discussed


2009 ◽  
Vol 22 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Matthew H. England

Abstract This study investigates interseasonal and interevent variations in the impact of El Niño on Australian rainfall using available observations from the postsatellite era. Of particular interest is the difference in impact between classical El Niño events wherein peak sea surface temperature (SST) anomalies appear in the eastern Pacific and the recently termed El Niño “Modoki” events that are characterized by distinct warm SST anomalies in the central Pacific and weaker cold anomalies in the west and east of the basin. A clear interseasonal and interevent difference is apparent, with the maximum rainfall response for Modoki events occurring in austral autumn compared to austral spring for classical El Niños. Most interestingly, the Modoki and non-Modoki El Niño events exhibit a marked difference in rainfall impact over Australia: while classical El Niños are associated with a significant reduction in rainfall over northeastern and southeastern Australia, Modoki events appear to drive a large-scale decrease in rainfall over northwestern and northern Australia. In addition, rainfall variations during March–April–May are more sensitive to the Modoki SST anomaly pattern than the conventional El Niño anomalies to the east.


2020 ◽  
Vol 50 (8) ◽  
pp. 2359-2372
Author(s):  
Gengxin Chen ◽  
Dongxiao Wang ◽  
Weiqing Han ◽  
Ming Feng ◽  
Fan Wang ◽  
...  

AbstractIn the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.


2009 ◽  
Vol 22 (6) ◽  
pp. 1499-1515 ◽  
Author(s):  
Jong-Seong Kug ◽  
Fei-Fei Jin ◽  
Soon-Il An

Abstract In this study, two types of El Niño events are classified based on spatial patterns of the sea surface temperature (SST) anomaly. One is the cold tongue (CT) El Niño, which can be regarded as the conventional El Niño, and the other the warm pool (WP) El Niño. The CT El Niño is characterized by relatively large SST anomalies in the Niño-3 region (5°S–5°N, 150°–90°W), while the WP El Niño is associated with SST anomalies mostly confined to the Niño-4 region (5°S–5°N, 160°E–150°W). In addition, spatial patterns of many atmospheric and oceanic variables are also distinctively different for the two types of El Niño events. Furthermore, the difference in the transition mechanism between the two types of El Niño is clearly identified. That is, the discharge process of the equatorial heat content associated with the WP El Niño is not efficient owing to the spatial structure of SST anomaly; as a result, it cannot trigger a cold event. It is also demonstrated that zonal advective feedback (i.e., zonal advection of mean SST by anomalous zonal currents) plays a crucial role in the development of a decaying SST anomaly associated with the WP El Niño, while thermocline feedback is a key process during the CT El Niño.


2010 ◽  
Vol 60 (5) ◽  
pp. 1255-1269 ◽  
Author(s):  
Takuya Hasegawa ◽  
Kentaro Ando ◽  
Keisuke Mizuno ◽  
Roger Lukas ◽  
Bunmei Taguchi ◽  
...  

2019 ◽  
Vol 54 (1-2) ◽  
pp. 351-372 ◽  
Author(s):  
Christina M. Patricola ◽  
John P. O’Brien ◽  
Mark D. Risser ◽  
Alan M. Rhoades ◽  
Travis A. O’Brien ◽  
...  

Abstract Until recently, the El Niño–Southern Oscillation (ENSO) was considered a reliable source of winter precipitation predictability in the western US, with a historically strong link between extreme El Niño events and extremely wet seasons. However, the 2015–2016 El Niño challenged our understanding of the ENSO-precipitation relationship. California precipitation was near-average during the 2015–2016 El Niño, which was characterized by warm sea surface temperature (SST) anomalies of similar magnitude compared to the extreme 1997–1998 and 1982–1983 El Niño events. We demonstrate that this precipitation response can be explained by El Niño’s spatial pattern, rather than internal atmospheric variability. In addition, observations and large-ensembles of regional and global climate model simulations indicate that extremes in seasonal and daily precipitation during strong El Niño events are better explained using the ENSO Longitude Index (ELI), which captures the diversity of ENSO’s spatial patterns in a single metric, compared to the traditional Niño3.4 index, which measures SST anomalies in a fixed region and therefore fails to capture ENSO diversity. The physically-based ELI better explains western US precipitation variability because it tracks the zonal shifts in tropical Pacific deep convection that drive teleconnections through the response in the extratropical wave-train, integrated vapor transport, and atmospheric rivers. This research provides evidence that ELI improves the value of ENSO as a predictor of California’s seasonal hydroclimate extremes compared to traditional ENSO indices, especially during strong El Niño events.


2012 ◽  
Vol 25 (23) ◽  
pp. 8177-8195 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li

Abstract This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO. The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.


Sign in / Sign up

Export Citation Format

Share Document