scholarly journals The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends

2009 ◽  
Vol 22 (2) ◽  
pp. 429-445 ◽  
Author(s):  
Seok-Woo Son ◽  
Lorenzo M. Polvani ◽  
Darryn W. Waugh ◽  
Thomas Birner ◽  
Hideharu Akiyoshi ◽  
...  

Abstract The evolution of the tropopause in the past, present, and future climate is examined by analyzing a set of long-term integrations with stratosphere-resolving chemistry climate models (CCMs). These CCMs have high vertical resolution near the tropopause, a model top located in the mesosphere or above, and, most important, fully interactive stratospheric chemistry. Using such CCM integrations, it is found that the tropopause pressure (height) will continue to decrease (increase) in the future, but with a trend weaker than that in the recent past. The reduction in the future tropopause trend is shown to be directly associated with stratospheric ozone recovery. A significant ozone recovery occurs in the Southern Hemisphere lower stratosphere of the CCMs, and this leads to a relative warming there that reduces the tropopause trend in the twenty-first century. The future tropopause trends predicted by the CCMs are considerably smaller than those predicted by the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, especially in the southern high latitudes. This difference persists even when the CCMs are compared with the subset of the AR4 model integrations for which stratospheric ozone recovery was prescribed. These results suggest that a realistic representation of the stratospheric processes might be important for a reliable estimate of tropopause trends. The implications of these finding for the Southern Hemisphere climate change are also discussed.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2266 ◽  
Author(s):  
Enrique Soriano ◽  
Luis Mediero ◽  
Carlos Garijo

Climate projections provided by EURO-CORDEX predict changes in annual maximum series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation and temperature projections supplied by climate models do not usually fit exactly the statistical properties of the observed time series in the control period. Bias correction methods are used to reduce such errors. This paper seeks to find the most adequate bias correction techniques for temperature and precipitation projections that minimizes the errors between observations and climate model simulations in the control period. Errors in flood quantiles are considered to identify the best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design and safety assessment. In addition, this study aims to understand how the expected changes in precipitation extremes and temperature will affect the catchment response in flood events in the future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a changing climate, in order to estimate flood changes expected in the future. Four catchments located in the central-western part of Spain have been selected as case studies. The HBV hydrological model has been calibrated in the four catchments by using the observed precipitation, temperature and streamflow data available on a daily scale. Rainfall has been identified as the most significant input to the model, in terms of its influence on flood response. The quantile mapping polynomial correction has been found to be the best bias correction method for precipitation. A general reduction in flood quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by the reduction of soil moisture content in catchments, due to the expected increase in temperature and decrease in mean annual precipitations.


2014 ◽  
Vol 94 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Qi Jing ◽  
Gilles Bélanger ◽  
Budong Qian ◽  
Vern Baron

Jing, Q., Bélanger, G., Qian, B. and Baron, V. 2014. Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada. Can. J. Plant Sci. 94: 213–222. Timothy (Phleum pratense L.) is harvested twice annually in Canada but with projected climate change, an additional harvest may be possible. Our objective was to evaluate the impact on timothy dry matter (DM) yield and key nutritive value attributes of shifting from a two- to a three-harvest system under projected future climate conditions at 10 sites across Canada. Future climate scenarios were generated with a stochastic weather generator (AAFC-WG) using two global climate models under the forcing of two Intergovernmental Panel on Climate Change emission scenarios and, then, used by the CATIMO (Canadian Timothy Model) grass model to simulate DM yield and key nutritive value attributes. Under future climate scenarios (2040–2069), the additional harvest and the resulting three-harvest system are expected to increase annual DM yield (+0.46 to +2.47 Mg DM ha−1) compared with a two-harvest system across Canada but the yield increment will on average be greater in eastern Canada (1.88 Mg DM ha−1) and Agassiz (2.02 Mg DM ha−1) than in the prairie provinces of Canada (0.84 Mg DM ha−1). The DM yield of the first harvest in a three-harvest system is expected to be less than in the two-harvest system, while that of the second harvest would be greater. Decreases in average neutral detergent fibre (NDF) concentration (−19 g kg−1 DM) and digestibility (dNDF, −5 g kg−1 NDF) are also expected with the three-harvest system under future conditions. Our results indicate that timothy will take advantage of projected climate change, through taking a third harvest, thereby increasing annual DM production.


2016 ◽  
Vol 8 (1) ◽  
pp. 142-164 ◽  
Author(s):  
Philbert Luhunga ◽  
Ladslaus Chang'a ◽  
George Djolov

The IPCC (Intergovernmental Panel on Climate Change) assessment reports confirm that climate change will hit developing countries the hardest. Adaption is on the agenda of many countries around the world. However, before devising adaption strategies, it is crucial to assess and understand the impacts of climate change at regional and local scales. In this study, the impact of climate change on rain-fed maize (Zea mays) production in the Wami-Ruvu basin of Tanzania was evaluated using the Decision Support System for Agro-technological Transfer. The model was fed with daily minimum and maximum temperatures, rainfall and solar radiation for current climate conditions (1971–2000) as well as future climate projections (2010–2099) for two Representative Concentration Pathways: RCP 4.5 and RCP 8.5. These data were derived from three high-resolution regional climate models, used in the Coordinated Regional Climate Downscaling Experiment program. Results showed that due to climate change future maize yields over the Wami-Ruvu basin will slightly increase relative to the baseline during the current century under RCP 4.5 and RCP 8.5. However, maize yields will decline in the mid and end centuries. The spatial distribution showed that high decline in maize yields are projected over lower altitude regions due to projected increase in temperatures in those areas.


2016 ◽  
Vol 8 (2) ◽  
pp. 30 ◽  
Author(s):  
Micah J. Hewer ◽  
William A. Gough

Weather and climate have been widely recognised as having an important influence on tourism and recreational activities. However, the nature of these relationships varies depending on the type, timing and location of these activities. Climate change is expected to have considerable and diverse impacts on recreation and tourism. Nonetheless, the potential impact of climate change on zoo visitation has yet to be assessed in a scientific manner. This case study begins by establishing the baseline conditions and statistical relationship between weather and zoo visitation in Toronto, Canada. Regression analysis, relying on historical weather and visitation data, measured at the daily time scale, formed the basis for this analysis. Climate change projections relied on output produced by Global Climate Models (GCMs) for the Intergovernmental Panel on Climate Change’s 2013 Fifth Assessment Report, ranked and selected using the herein defined Selective Ensemble Approach. This seasonal GCM output was then used to inform daily, local, climate change scenarios, generated using Statistical Down-Scaling Model Version 5.2. A series of seasonal models were then used to assess the impact of projected climate change on zoo visitation. While accounting for the negative effects of precipitation and extreme heat, the models suggested that annual visitation to the zoo will likely increase over the course of the 21st century due to projected climate change: from +8% in the 2020s to +18% by the 2080s, for the least change scenario; and from +8% in the 2020s to +34% in the 2080s, for the greatest change scenario. The majority of the positive impact of projected climate change on zoo visitation in Toronto will likely occur in the shoulder season (spring and fall); with only moderate increases in the off season (winter) and potentially negative impacts associated with the peak season (summer), especially if warming exceeds 3.5 °C.


2019 ◽  
Vol 271 ◽  
pp. 01006
Author(s):  
Omid khandel ◽  
Mohamed Soliman

Climate change has recently been recognized as a significant factor that can drive changes to current design and life-cycle assessment practices of infrastructure systems. The instability in temperature profiles and precipitation patterns in recent decades indicate that the future flood hazard occurrence rate may not necessarily follow historical trends. In addition to the impact of climate change on flood hazard occurrence rate and the associated scour progression, it could also affect the corrosion propagation in structural components. This paper presents a probabilistic framework for quantifying the multi-hazard failure risk of bridges under gradual and sudden deterioration considering climate change. Downscaled climate data adopted from the global climate models are employed to predict the future streamflow and temperature profiles at a given location. These profiles are subsequently used to quantify future failure probability and risk under corrosion and flood hazard. The proposed framework is illustrated on an existing bridge located in Oklahoma.


2019 ◽  
Vol 11 (2) ◽  
pp. 341-366 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
Hamideh Kazemi ◽  
P. Ranjan Sarukkalige

Abstract The application of two distinctively different hydrologic models, (conceptual-HBV) and (distributed-BTOPMC), was compared to simulate the future runoff across three unregulated catchments of the Australian Hydrologic Reference Stations (HRSs), namely Harvey catchment in WA, and Beardy and Goulburn catchments in NSW. These catchments have experienced significant runoff reduction during the last decades due to climate change and human activities. The Budyko-elasticity method was employed to assign the influences of human activities and climate change on runoff variations. After estimating the contribution of climate change in runoff reduction from the past runoff regime, the downscaled future climate signals from a multi-model ensemble of eight global climate models (GCMs) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the mid-(2046–2065) and late-(2080–2099) 21st-century. Results show that the conceptual model performs better than the distributed model in capturing the observed streamflow across the three contributing catchments. The performance of the models was relatively compatible in the overall direction of future streamflow change, regardless of the magnitude, and incompatible regarding the change in the direction of high and low flows for both future climate scenarios. Both models predicted a decline in wet and dry season's streamflow across the three catchments.


2014 ◽  
Vol 27 (3) ◽  
pp. 1100-1120 ◽  
Author(s):  
David H. Rind ◽  
Judith L. Lean ◽  
Jeffrey Jonas

Abstract Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.4°C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model’s depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.


2021 ◽  
Author(s):  
Irina Y. Petrova ◽  
Diego G. Miralles ◽  
Florent Brient ◽  
Markus Donat

<p>Droughts are defined as one of the most devastating natural disasters of modern times and a key challenge faced under climate change. The complexity of interacting physical processes that underlie the shortage of rainfall in climate models hampers accurate representation of present-day droughts, and leads to differences in their responses to increased greenhouse gas (GHG) concentrations in the future. As a result, the confidence in drought projections is currently defined as ‘medium to low' by the Intergovernmental Panel on Climate Change (IPCC), and reducing this uncertainty remains one of the main goals in coming years, with significant benefits for human and natural systems. </p><p>In this study we explore a relationship between biases in simulated present-day values of longest annual drought (LAD) and future projections of LAD in an ensemble of CMIP5 and CMIP6 models. We find that present-day model bias explains almost 95 % of the future uncertainty in LAD by the end of the 21st century, attributed to the well-known precipitation simulation errors: “drier” models with longer annual droughts at present tend to predict larger LAD values worldwide in the future, as well as a stronger response to GHG forcing in LAD, which is significant in more than 40 % of the global land area.</p><p>Substituting observational LAD estimates from satellite data into this model-revealed “present–future relationlarship” suggests that the 21st century global mean increase in duration of annual meteorological droughts could be significantly larger than predicted by the CMIP5 and CMIP6 model ensembles. This emergent constraint reduces global mean uncertainty range in future LAD estimates from 45–100 to 75–90 days, a level more typical of the prediction range of “drier” models. The findings reveal world regions where climate change may cause stronger meteorological drought aggravation than expected, and emphasise the importance of reducing model errors, which are presently largely owed to rain biases, to increase confidence in future predictions.</p>


2012 ◽  
Vol 25 (11) ◽  
pp. 3792-3809 ◽  
Author(s):  
Scott B. Power ◽  
François Delage ◽  
Robert Colman ◽  
Aurel Moise

Under global warming, increases in precipitation are expected at high latitudes and near major tropical convergence zones in some seasons, while decreases are expected in many subtropical and midlatitude areas in between. In many other areas there is no consensus among models on the sign of the projected change. This is often assumed to indicate that precipitation projections in these regions are highly uncertain. Here, twenty-first century precipitation projections under the Special Report on Emissions Scenarios (SRES) A1B scenario using 24 World Climate Research Programme (WCRP)/Coupled Model Intercomparison Project phase 3 (CMIP3) climate models are examined. In areas with no consensus on the sign of projected change there are extensive subregions where the projected change is “very likely” (i.e., probability > 0.90) to be small (relative to, e.g., the size of interannual variability during the late twentieth century) or zero. The statistical significance of and interrelationships between methods used to identify model consensus on projected change in the 2007 Intergovernmental Panel on Climate Change (IPCC) report are examined, and the impact of interdependency among model projections on statistical significance is investigated. Interdependency among projections is shown to be much weaker than interdependency among simulations of climatology. The results show that there is more widespread consistency among the model projections than one might infer from the 2007 IPCC Fourth Assessment report. This discovery highlights the broader need to identify regions, variables, and phenomena that are expected to be little affected by anthropogenic climate change and to communicate this information to the wider community. This is especially important for projections of climate for the next 1–3 decades.


Sign in / Sign up

Export Citation Format

Share Document