Effects of Initial Soil Moisture on Rainfall Generation and Subsequent Hydrologic Response during the North American Monsoon

2009 ◽  
Vol 10 (3) ◽  
pp. 644-664 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Kinwai Tai ◽  
David J. Gochis

Abstract Through the use of a mesoscale meteorological model and distributed hydrologic model, the effects of initial soil moisture on rainfall generation, streamflow, and evapotranspiration during the North American monsoon are examined. A collection of atmospheric fields is simulated by varying initial soil moisture in the meteorological model. Analysis of the simulated rainfall fields shows that the total rainfall, intensity, and spatial coverage increase with higher soil moisture. Hydrologic simulations forced by the meteorological fields are performed using two scenarios: (i) fixed soil moisture initializations obtained via a drainage experiment in the hydrologic model and (ii) adjusted initializations to match conditions in the two models. The scenarios indicate that the runoff ratio increases with higher rainfall, although a change is observed from a linear (fixed initialization) to a nonlinear response (adjusted initialization). Variations in basin response are attributed to controls exerted by rainfall, soil, and vegetation properties for varying initial conditions. Antecedent wetness significantly influences the runoff response through the interplay of different runoff generation mechanisms and also controls the evapotranspiration process. The authors conclude that a regional increase in initial soil moisture promotes rainfall generation, streamflow, and evapotranspiration for this warm-season case study.

Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

2008 ◽  
Vol 35 (22) ◽  
Author(s):  
Enrique R. Vivoni ◽  
Hernan A. Moreno ◽  
Giuseppe Mascaro ◽  
Julio C. Rodriguez ◽  
Christopher J. Watts ◽  
...  

2007 ◽  
Vol 8 (3) ◽  
pp. 513-533 ◽  
Author(s):  
Yeonjoo Kim ◽  
Guiling Wang

Abstract To investigate the impact of anomalous soil moisture conditions on subsequent precipitation over North America, a series of numerical experiments is performed using a modified version of the Community Atmosphere Model version 3 and the Community Land Model version 3 (CAM3–CLM3). First, the mechanisms underlying the impact of spring and summer soil moisture on subsequent precipitation are examined based on simulations starting on 1 April and 1 June, respectively. How the response of precipitation to initial soil moisture anomalies depends on the characteristics of such anomalies, including the timing, magnitude, spatial coverage, and vertical depth, is then investigated. There are five main findings. First, the impact of spring soil moisture anomalies is not evident until early summer although their impact on the large-scale circulation results in slight changes in precipitation during spring. Second, precipitation increases with initial soil moisture almost linearly within a certain range of soil moisture. Beyond this range, precipitation is less responsive. Third, during the first month following the onset of summer soil moisture anomalies, the precipitation response to wet anomalies is larger in magnitude than that to dry anomalies. However, the resulting wet anomalies in precipitation quickly dissipate within a month or so, while the resulting dry anomalies in precipitation remain at a considerable magnitude for a longer period. Consistently, wet spring anomalies are likely to be ameliorated before summer, and thus have a smaller impact (in magnitude) on summer precipitation than dry spring anomalies. Fourth, soil moisture anomalies of smaller spatial coverage lead to precipitation anomalies that are smaller and less persistent, compared to anomalies at the continental scale. Finally, anomalies in shallow soil can persist long enough to influence the subsequent precipitation at the seasonal time scale. Dry anomalies in deep soils last much longer than those in shallow soils.


2018 ◽  
Vol 57 (8) ◽  
pp. 1683-1710 ◽  
Author(s):  
James M. Moker ◽  
Christopher L. Castro ◽  
Avelino F. Arellano ◽  
Yolande L. Serra ◽  
David K. Adams

AbstractDuring the North American monsoon global positioning system (GPS) Transect Experiment 2013, daily convective-permitting WRF simulations are performed in northwestern Mexico and the southern Arizona border region using the operational Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) models as lateral boundary forcing and initial conditions. Compared to GPS precipitable water vapor (PWV), the WRF simulations display a consistent moist bias in the initial specification of PWV leading to convection beginning 3–6 h early. Given appreciable observed rainfall, days are classified as strongly and weakly forced based only on the presence of an inverted trough (IV); gulf surges did not noticeably impact the development of mesoscale convective systems (MCSs) and related convection in northwestern Mexico. Strongly forced days display higher modeled precipitation forecast skill than weakly forced days in the slopes of the northern Sierra Madre Occidental (SMO) away from the crest, especially toward the west where MCSs account for the greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 2013 illustrates two consecutive days when nearly identical MCSs evolved over northern Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) when an IV is approaching the core monsoon region, a simulated MCS is basically nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The greater sensitivity to the initial specification of PWV in the weakly forced day suggests that assimilation of GPS-derived PWV for these types of days may be of greatest value in improving model precipitation forecasts.


2004 ◽  
Vol 130 (603) ◽  
pp. 2873-2890 ◽  
Author(s):  
Jianjun Xu ◽  
W. James Shuttleworth ◽  
X. Gao ◽  
Soroosh Sorooshian ◽  
Eric E. Small

2006 ◽  
Vol 10 (20) ◽  
pp. 1-24 ◽  
Author(s):  
Diandong Ren ◽  
Ann Henderson-Sellers

Abstract Besides the atmospheric forcing such as solar radiation input and precipitation, the heterogeneity of the surface cover also plays an important role, especially in the distribution characteristics of the latent heat flux (LE). In this study, scaling issues are discussed based on an analytical hydrological model that describes the transpiration and diffusion processes of soil water. The solution of this analytical model is composed of a transient part that depends primarily on initial conditions and a steady part that depends on the boundary conditions. To know how sensitive the different averaging approaches are to the initial conditions, three initial profiles are chosen that cover the prevailing soil moisture regimes. After analyzing its solution, the study shows that 1) upon reaching the steady state, directly taking an average of soil properties will cause systematic overestimation in the calculation of area-averaged LE. For an initially very dry condition, averaging of a sandy soil and a clay soil can cause a percentage error as large as 40%. 2) For vegetation growing on sandy soils, a direct averaging of the transpiration rate results in persistent overestimation of LE. For vegetation growing on clay soil, however, even after reaching the steady state, averaging of two water extraction weights can be either an overestimation or an underestimation, depending on which two vegetation types are involved. 3) During the interim stage of drying down, averaging of the soil/vegetation properties can lead to either an overestimation or an underestimation, depending on the evolving stage of the soil moisture profile. 4) The initial soil moisture condition matters during the transient stage of drying down. Different initial soil moisture conditions yield different scenarios of underestimation and overestimation patterns and a differing severity of errors. The simplicity of the analytical model and the heuristic initial soil profiles make the generalization easier than using sophisticated numerical models and make the causality mechanism clearer for physical interpretations.


Sign in / Sign up

Export Citation Format

Share Document