scholarly journals A General Theorem on Angular-Momentum Changes due to Potential Vorticity Mixing and on Potential-Energy Changes due to Buoyancy Mixing

2010 ◽  
Vol 67 (4) ◽  
pp. 1261-1274 ◽  
Author(s):  
Richard B. Wood ◽  
Michael E. McIntyre

Abstract An initial zonally symmetric quasigeostrophic potential vorticity (PV) distribution qi(y) is subjected to complete or partial mixing within some finite zone |y| < L, where y is latitude. The change in M, the total absolute angular momentum, between the initial and any later time is considered. For standard quasigeostrophic shallow-water beta-channel dynamics it is proved that, for any qi(y) such that dqi/dy > 0 throughout |y| < L, the change in M is always negative. This theorem holds even when “mixing” is understood in the most general possible sense. Arbitrary stirring or advective rearrangement is included, combined to an arbitrary extent with spatially inhomogeneous diffusion. The theorem holds whether or not the PV distribution is zonally symmetric at the later time. The same theorem governs Boussinesq potential-energy changes due to buoyancy mixing in the vertical. For the standard quasigeostrophic beta-channel dynamics to be valid the Rossby deformation length LD ≫ εL where ε is the Rossby number; when LD = ∞ the theorem applies not only to the beta channel but also to a single barotropic layer on the full sphere, as considered in the recent work of Dunkerton and Scott on “PV staircases.” It follows that the M-conserving PV reconfigurations studied by those authors must involve processes describable as PV unmixing, or antidiffusion, in the sense of time-reversed diffusion. Ordinary jet self-sharpening and jet-core acceleration do not, by contrast, require unmixing, as is shown here by detailed analysis. Mixing in the jet flanks suffices. The theorem extends to multiple layers and continuous stratification. A least upper bound and greatest lower bound for the change in M is obtained for cases in which qi is neither monotonic nor zonally symmetric. A corollary is a new nonlinear stability theorem for shear flows.

2012 ◽  
Vol 90 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Ningjiu Zhao ◽  
Yufang Liu

In this work, we employed the quasi-classical trajectory (QCT) method to study the vector correlations and the influence of the reagent initial rotational quantum number j for the reaction He + T2+ (v = 0, j = 0–3) → HeT+ + T on a new potential energy surface (PES). The PES was improved by Aquilanti co-workers (Chem. Phys. Lett. 2009. 469: 26–30). The polarization-dependent differential cross sections (PDDCSs) and the distributions of P(θr), P([Formula: see text]r), and P(θr, [Formula: see text]r) are presented in this work. The plots of the PDDCSs provide us with abundant information about the distribution of the product angular momentum polarization. The P(θr) is used to describe the correlation between k (the relative velocity of the reagent) and j′ (the product rotational angular momentum). The distribution of dihedral angle P([Formula: see text]r) shows the k–k′–j′ (k′ refers to the relative velocity of the product) correlation. The PDDCS calculations illustrate that the product of this reaction is mainly backward scatter and it has the strongest polarization in the backward and sideways scattering directions. At the same time, the results of the P([Formula: see text]r) demonstrate that the product HeT+ tends to be oriented along the positive direction of the y axis and it tends to rotate right-handedly in planes parallel to the scattering plane. Moreover, the distribution of the P(θr) manifests that the product angular momentum is aligned along different directions relative to k. The direction of the product alignment may be perpendicular, opposite, or parallel to k. Moreover, our calculations are independent of the initial rotational quantum number.


2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


1995 ◽  
Vol 10 ◽  
pp. 597-598
Author(s):  
R. Wehrse

An accretion disk is formed when matter with angular momentum is flowing on a gravitating object (as e.g. a white dwarf, a neutron star, a young stellar object, or a black bole). It radiates because the transport of angular momentum (required for the matter to reach the central object) necessarily implies the conversion of potential energy into a form of energy that corresponds to higher entropy. Many aspects of the physics (as e.g. the mechanism for the heat generation) are not yet well understood but they are presently one of the centers of astronomical interest (see e.g. the books by Frank, King, and Raine, 1992, or by Wheeler, 1993).


2002 ◽  
Vol 01 (02) ◽  
pp. 285-293 ◽  
Author(s):  
HIDEYUKI KAMISAKA ◽  
HIROKI NAKAMURA ◽  
SHINKOH NANBU ◽  
MUTSUMI AOYAGI ◽  
WENSHENG BIAN ◽  
...  

Using the accurate global potential energy surfaces for the 11A′′ and 21A′ states reported in the previous sister Paper I, detailed quantum dynamics calculations are performed for these adiabatic surfaces separately for J = 0 (J: total angular momentum quantum number). In addition to the significant overall contributions of these states to the title reactions reported in the second Paper II of this series, quantum dynamics on these excited potential energy surfaces (PES) are clarified in terms of the PES topographies, which are quite different from that of the ground PES. The reaction mechanisms are found to be strongly selective and nicely explained as vibrationally nonadiabatic transitions in the vicinity of potential ridge.


2004 ◽  
Vol 03 (03) ◽  
pp. 443-449 ◽  
Author(s):  
MEI-YU ZHAO ◽  
KE-LI HAN ◽  
GUO-ZHONG HE ◽  
JOHN Z. H. ZHANG

In this paper, we have calculated the rotational state distributions following the photodissociation of ozone in the Hartley band with total angular momentum J'=1. The calculated results are obtained by using time-dependent wave packet calculations on the Sheppard–Walker potential energy surface (PES). It is found that the physically more correct treatment with J'=1 semi-quantitatively reproduces the rotational state distributions of the CARS. Compared with the previous theoretical works, which had taken J=0 on both the ground and excited potential surface, J'=1 treatment makes the rotational distributions of the fragment closer to the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document