scholarly journals The 1997/98 Summer Rainfall Season in Southern Africa. Part II: Model Simulations and Coupled Model Forecasts

2009 ◽  
Vol 22 (13) ◽  
pp. 3802-3818 ◽  
Author(s):  
Bradfield Lyon ◽  
Simon J. Mason

Abstract This is the second of a two-part investigation of rainfall in southern Africa during the strong El Niño of 1997/98. In Part I it was shown that widespread drought in southern Africa, typical of past El Niño events occurring between 1950 and 2000, generally failed to materialize during the 1997/98 El Niño, most notably during January–March (JFM) 1998. Here output from three atmospheric general circulation models (AGCMs) forced with observed sea surface temperatures (SSTs) and seasonal forecasts from three coupled models are examined to see to what extent conditions in JFM 1998 could have potentially been anticipated. All three AGCMs generated widespread drought conditions across southern Africa, similar to those during past El Niño events, and did a generally poor job in generating the observed rainfall and atmospheric circulation anomaly patterns, particularly over the eastern and southern Indian Ocean. In contrast, two of the three coupled models showed a higher probability of wetter conditions in JFM 1998 than for past El Niño events, with an enhanced moisture flux from the Indian Ocean, as was observed. However, neither the AGCMs nor the coupled models generated anomalous stationary wave patterns consistent with observations over the South Atlantic and Pacific. The failure of any of the models to reproduce an enhanced Angola low (favoring rainfall) associated with an anomalous wave train in this region suggests that the coupled models that did indicate wetter conditions in JFM 1998 compared to previous El Niño episodes may have done so, at least partially, for the wrong reasons. The general inability of the climate models used in this study to generate key features of the seasonal climate over southern Africa in JFM 1998 suggests that internal atmospheric variability contributed to the observed rainfall and circulation patterns that year. With the caveat that current climate models may not properly respond to SST boundary forcing important to simulating southern Africa climate, this study finds that the JFM 1998 rainfall in southern Africa may have been largely unpredictable on seasonal time scales.

2021 ◽  
Author(s):  
Shouwen Zhang ◽  
Hui Wang ◽  
Hua Jiang ◽  
Wentao Ma

AbstractThe late spring rainfall may account for 15% of the annual total rainfall, which is crucial to early planting in southeastern China. A better understanding of the precipitation variations in the late spring and its predictability not only greatly increase our knowledge of related mechanisms, but it also benefits society and the economy. Four models participating in the North American Multi-Model Ensemble (NMME) were selected to study their abilities to forecast the late spring rainfall over southeastern China and the major sources of heavy rainfall from the perspective of the sea surface temperature (SST) field. We found that the models have better abilities to forecast the heavy rainfall over the middle and lower reaches of the Yangtze River region (MLYZR) with only a 1-month lead time, but they failed for a 3-month lead time since the occurrence of the heavy rainfall was inconsistent with the observations. The observations indicate that the warm SST anomalies in the tropical eastern Indian Ocean are vital to the simultaneously heavy rainfall in the MLYZR in May, but an El Niño event is not a necessary condition for determining the heavy rainfall over the MLYZR. The heavy rainfall over the MLYZR in May is always accompanied by warming of the northeastern Indian Ocean and of the northeastern South China Sea (NSCS) from April to May in the models and observations, respectively. In the models, El Niño events may promote the warming processes over the northeastern Indian Ocean, which leads to heavy rainfall in the MLYZR. However, in the real world, El Niño events are not the main reason for the warming of the NSCS, and further research on the causes of this warming is still needed.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 851
Author(s):  
Gen Li ◽  
Zhiyuan Zhang ◽  
Bo Lu

Under increased greenhouse gas (GHG) forcing, climate models tend to project a warmer sea surface temperature in the eastern equatorial Pacific than in the western equatorial Pacific. This El Niño-like warming pattern may induce an increase in the projected occurrence frequency of extreme El Niño events. The current models, however, commonly suffer from an excessive westward extension of the equatorial Pacific cold tongue accompanied by insufficient equatorial western Pacific precipitation. By comparing the Representative Concentration Pathway (RCP) 8.5 experiments with the historical simulations based on the Coupled Model Intercomparison Project phase 5 (CMIP5), a “present–future” relationship among climate models was identified: models with insufficient equatorial western Pacific precipitation error would have a weaker mean El Niño-like warming pattern as well as a lower increase in the frequency of extreme El Niño events under increased GHG forcing. Using this “present–future” relationship and the observed precipitation in the equatorial western Pacific, this study calibrated the climate projections in the tropical Pacific. The corrected projections showed a stronger El Niño-like pattern of mean changes in the future, consistent with our previous study. In particular, the projected increased occurrence of extreme El Niño events under RCP 8.5 forcing are underestimated by 30–35% in the CMIP5 multi-model ensemble before the corrections. This implies an increased risk of the El Niño-related weather and climate disasters in the future.


2018 ◽  
Vol 99 (1) ◽  
pp. S91-S96 ◽  
Author(s):  
Chris Funk ◽  
Frank Davenport ◽  
Laura Harrison ◽  
Tamuka Magadzire ◽  
Gideon Galu ◽  
...  

2005 ◽  
Vol 18 (10) ◽  
pp. 1566-1574 ◽  
Author(s):  
A. B. Potgieter ◽  
G. L. Hammer ◽  
H. Meinke ◽  
R. C. Stone ◽  
L. Goddard

Abstract The El Niño–Southern Oscillation (ENSO) phenomenon significantly impacts rainfall and ensuing crop yields in many parts of the world. In Australia, El Niño events are often associated with severe drought conditions. However, El Niño events differ spatially and temporally in their manifestations and impacts, reducing the relevance of ENSO-based seasonal forecasts. In this analysis, three putative types of El Niño are identified among the 24 occurrences since the beginning of the twentieth century. The three types are based on coherent spatial patterns (“footprints”) found in the El Niño impact on Australian wheat yield. This bioindicator reveals aligned spatial patterns in rainfall anomalies, indicating linkage to atmospheric drivers. Analysis of the associated ocean–atmosphere dynamics identifies three types of El Niño differing in the timing of onset and location of major ocean temperature and atmospheric pressure anomalies. Potential causal mechanisms associated with these differences in anomaly patterns need to be investigated further using the increasing capabilities of general circulation models. Any improved predictability would be extremely valuable in forecasting effects of individual El Niño events on agricultural systems.


2018 ◽  
Vol 31 (5) ◽  
pp. 1811-1832 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Feng Tian ◽  
Xiujun Wang

Ocean biology components affect the vertical redistribution of incoming solar radiation in the upper ocean of the tropical Pacific and can significantly modulate El Niño–Southern Oscillation (ENSO). The biophysical interactions in the region were represented by coupling an ocean biology model with an ocean general circulation model (OGCM); the coupled ocean physics–biology model is then forced by prescribed wind anomalies during 1980–2007. Two ocean-only experiments were performed with different representations of chlorophyll (Chl). In an interannual Chl run (referred to as Chlinter), Chl was interannually varying, which was interactively calculated from the ocean biology model to explicitly represent its heating feedback on ocean thermodynamics. The structure and relationship of the related heating terms were examined to understand the Chl-induced feedback effects and the processes involved. The portion of solar radiation penetrating the bottom of the mixed layer ( Qpen) was significantly affected by interannual Chl anomalies in the western-central equatorial Pacific. In a climatological run (Chlclim), the Chl concentration was prescribed to be its seasonally varying climatology derived from the Chlinter run. Compared with the Chlclim run, interannual variability in the Chlinter run tended to be reduced. The sea surface temperature (SST) differences between the two runs exhibited an asymmetric bioeffect: they were stronger during La Niña events but relatively weaker during El Niño events. The signs of the SST differences between the two runs indicated a close relationship with Chl: a cooling effect was associated with a low Chl concentration during El Niño events, and a strong warming effect was associated with a high Chl concentration during La Niña events.


2006 ◽  
Vol 19 (9) ◽  
pp. 1850-1868 ◽  
Author(s):  
Matthieu Lengaigne ◽  
Jean-Philippe Boulanger ◽  
Christophe Menkes ◽  
Hilary Spencer

Abstract In this study, the mechanisms leading to the El Niño peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Niño events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Niño demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation. In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Niño events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Niño termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Niña conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Niño demise, an evolution that is similar to the prolonged 1986/87 El Niño event. La Niña events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Niño cases.


2020 ◽  
Vol 50 (8) ◽  
pp. 2359-2372
Author(s):  
Gengxin Chen ◽  
Dongxiao Wang ◽  
Weiqing Han ◽  
Ming Feng ◽  
Fan Wang ◽  
...  

AbstractIn the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.


2007 ◽  
Vol 20 (13) ◽  
pp. 2895-2916 ◽  
Author(s):  
Qian Song ◽  
Gabriel A. Vecchi ◽  
Anthony J. Rosati

Abstract The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east–west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM–El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other. The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.


2018 ◽  
Vol 31 (4) ◽  
pp. 1315-1335 ◽  
Author(s):  
Samantha Ferrett ◽  
Matthew Collins ◽  
Hong-Li Ren

The rate of damping of tropical Pacific sea surface temperature anomalies (SSTAs) associated with El Niño events by surface shortwave heat fluxes has significant biases in current coupled climate models [phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. Of 33 CMIP5 models, 16 have shortwave feedbacks that are weakly negative in comparison to observations, or even positive, resulting in a tendency of amplification of SSTAs. Two biases in the cloud response to El Niño SSTAs are identified and linked to significant mean state biases in CMIP5 models. First, cool mean SST and reduced precipitation are linked to comparatively less cloud formation in the eastern equatorial Pacific during El Niño events, driven by a weakened atmospheric ascent response. Second, a spurious reduction of cloud driven by anomalous surface relative humidity during El Niño events is present in models with more stable eastern Pacific mean atmospheric conditions and more low cloud in the mean state. Both cloud response biases contribute to a weak negative shortwave feedback or a positive shortwave feedback that amplifies El Niño SSTAs. Differences between shortwave feedback in the coupled models and the corresponding atmosphere-only models (AMIP) are also linked to mean state differences, consistent with the biases found between different coupled models. Shortwave feedback bias can still persist in AMIP, as a result of persisting weak shortwave responses to anomalous cloud and weak cloud responses to atmospheric ascent. This indicates the importance of bias in the atmosphere component to coupled model feedback and mean state biases.


2015 ◽  
Vol 21 (2) ◽  
pp. 75 ◽  
Author(s):  
Khairul Amri ◽  
Ali Suman ◽  
Hari Eko Irianto ◽  
Wudianto Wudianto

The effects of Indian Ocean Dipole Mode and El Niño–Southern Oscillation events on catches of YellowfinTuna (<em>Thunnus albacares</em>) in the Eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea surface temperature/SST and chlorophyll-a concentration/SSC) and Yellowfin Tuna catch data. Analyses were conducted for the period of 2003–2012, which included the strong positive dipole mode event in association with weak El-Nino 2006.Yellowfin Tuna catch data were taken from Palabuhanratu landing place and remotely sensed environmental data were taken from MODIS-Aqua sensor.The result showed that regional climate anomaly Indian Ocean Dipole Mode influenced Yellowfin Tuna catch and its composition. The catches per unit effort (CPUE) of Thunnus alabacares in the strong positive dipole mode event in 2006 and weak El-Nino events in 2011 and 2012 was higher. The increase patern of CPUE followed the upwelling process, started from May-June achieved the peak between September-October.Very high increase in CPUE when strong positive dipole mode event (2006) and a weak El-Nino events (2011 and 2012) had a relation with the increase in the distribution of chlorophyll-a indicating an increase in the abundance of phytoplankton (primary productivity) due to upwelling. In contrast, yellowfin tuna CPUE is very low at the La-Nina event (2005), though as the dominant catch when compared to others.


Sign in / Sign up

Export Citation Format

Share Document