North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems*

2009 ◽  
Vol 22 (19) ◽  
pp. 5163-5174 ◽  
Author(s):  
Lina I. Ceballos ◽  
Emanuele Di Lorenzo ◽  
Carlos D. Hoyos ◽  
Niklas Schneider ◽  
Bunmei Taguchi

Abstract Recent studies have identified the North Pacific Gyre Oscillation (NPGO) as a mode of climate variability that is linked to previously unexplained fluctuations of salinity, nutrient, and chlorophyll in the northeast Pacific. The NPGO reflects changes in strength of the central and eastern branches of the subtropical gyre and is driven by the atmosphere through the North Pacific Oscillation (NPO), the second dominant mode of sea level pressure variability in the North Pacific. It is shown that Rossby wave dynamics excited by the NPO propagate the NPGO signature in the sea surface height (SSH) field from the central North Pacific into the Kuroshio–Oyashio Extension (KOE), and trigger changes in the strength of the KOE with a lag of 2–3 yr. This suggests that the NPGO index can be used to track changes in the entire northern branch of the North Pacific subtropical gyre. These results also provide a physical mechanism to explain coherent decadal climate variations and ecosystem changes between the North Pacific eastern and western boundaries.

2020 ◽  
Author(s):  
Sara Ferron ◽  
Benedetto Barone ◽  
Matthew J Church ◽  
Angelicque E. White ◽  
David M. Karl

Abstract Recent evidence shows that the North Pacific subtropical gyre, the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20%±5%) and moved poleward (1.6°±0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°-160°W) shows most significant weakening (18%±7%) and poleward shifting (2.4°±0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E-180°) has similar but moderate changes (10% ± 8%; 0.9°±0.4°). Trends of the western part of the STMW (140°E-160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S203
Author(s):  
Mathias Girault ◽  
Hisayuki Arakawa ◽  
Gerald Gregori ◽  
Fuminori Hashihama ◽  
Hyonchol Kim ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Mary R. Gradoville ◽  
Byron C. Crump ◽  
Ricardo M. Letelier ◽  
Matthew J. Church ◽  
Angelicque E. White

Sign in / Sign up

Export Citation Format

Share Document