climate fluctuations
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 109)

H-INDEX

48
(FIVE YEARS 5)

2022 ◽  
Vol 579 ◽  
pp. 117364
Author(s):  
Kunio Kaiho ◽  
Daisuke Tanaka ◽  
Sylvain Richoz ◽  
David S. Jones ◽  
Ryosuke Saito ◽  
...  

2022 ◽  
pp. 1611-1632
Author(s):  
Soraia El Baz

Climate change is a daunting problem and has only recently attracted attention. This chapter presents a review on the implications of climate change on the regulation, and modelling of toxic pollutants. Also, it identifies relationships between climate fluctuations and changes in some polluants distribution (heavy metals, hydrocarbons, and pesticides). Moreover, the influence of climate change on polluant environmental behavior is explored by studying polluants response to inter-annual climate fluctuations such as precipitation and temperature. Therefore, it will be important to monitor strategies taking into account climate change and new regulatory plans should be devised in toxics polluant management.


2021 ◽  
Author(s):  
Luiz Jardim-deQueiroz ◽  
Carmela J. Doenz ◽  
Florian Altermatt ◽  
Roman Alther ◽  
Špela Borko ◽  
...  

Quaternary climate fluctuations can affect biodiversity assembly through speciation in two non-mutually-exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation during ice-free periods. Here we detected biogeographic and genetic signatures associated with both mechanisms in the generation of the European Alps biodiversity. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age, and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome may be attributable to a faster range expansion of these taxa after glacial retreats, though fewer stable environments may also have contributed to differences between terrestrial areas and lakes. The high proportion of young, endemic species make the Alps vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct histories.


2021 ◽  
Author(s):  
Ayush Agrawal ◽  
James Swift

Abstract Previous studies have found there to be measurable deoxygenation in regions of the world’s oceans, with changes linked to biogeochemical cycles, changes in ocean productivity, and climate fluctuations. Here, we investigated multidecadal large-scale dissolved oxygen trends in the principal basins of the Atlantic, Pacific, and Indian Oceans using data from WOCE, CLIVAR, and GO-SHIP cruises, representing some of the highest quality available water column data. We differenced spatially coincident older and more recent data, averaged differences in geographic subregions, and integrated results on 500-dbar thick layers from 500 dbar to 3500 dbar, with bottom levels extending to 6000 dbar. Overall, we found a deoxygenation below 500 dbar across all major basins at a global average rate of -0.06 µmol kg−1 year−1, with important variations between regions and layers. Our research demonstrates a deoxygenation trend coincident with the global ocean warming and increased stratification trends documented in other studies.


2021 ◽  
Vol 22 (22) ◽  
pp. 12349
Author(s):  
Tugdem Muslu ◽  
Bala Ani Akpinar ◽  
Sezgi Biyiklioglu-Kaya ◽  
Meral Yuce ◽  
Hikmet Budak

Food insecurity and malnutrition have reached critical levels with increased human population, climate fluctuations, water shortage; therefore, higher-yielding crops are in the spotlight of numerous studies. Abiotic factors affect the yield of staple food crops; among all, wheat stem sawfly (Cephus cinctus Norton) and orange wheat blossom midge (Sitodiplosis mosellana) are two of the most economically and agronomically harmful insect pests which cause yield loss in cereals, especially in wheat in North America. There is no effective strategy for suppressing this pest damage yet, and only the plants with intrinsic tolerance mechanisms such as solid stem phenotypes for WSS and antixenosis and/or antibiosis mechanisms for OWBM can limit damage. A major QTL and a causal gene for WSS resistance were previously identified in wheat, and 3 major QTLs and a causal gene for OWBM resistance. Here, we present a comparative analysis of coding and non-coding features of these loci of wheat across important cereal crops, barley, rye, oat, and rice. This research paves the way for our cloning and editing of additional WSS and OWBM tolerance gene(s), proteins, and metabolites.


2021 ◽  
Vol 13 (20) ◽  
pp. 4053
Author(s):  
Yaqing Lu ◽  
Xudong Zhu

The photochemical reflectance index (PRI) has been often used as a physiology-based remote sensing indicator of ecosystem carbon fluxes. However, the assessments of PRI in tracking long-term carbon fluxes with climatic anomalies in mangroves are very limited. In this study, four-year (2017–2020) continuous time series measurements from tower-based eddy covariance and spectral systems in a subtropical mangrove were used to explore the ability of PRI in tracking the response of mangrove carbon fluxes to climate fluctuations and drought stress. The results showed that the temporal dynamics of daily PRI and carbon fluxes shared similar variation patterns over the study period, experiencing simultaneously decreasing trends under drought stress. Compared with the first three years, annual mean values of NEE in 2020 decreased by 10.7% and PRI decreased by 29.0%, correspondingly. PRI and carbon fluxes were significantly correlated across diurnal, seasonal, and annual time scales with better fitness under drought stress. Dark-state PRI (PRI0), the constitutive component of PRI variation due to seasonally changing pigment pool size, showed similar temporal variation as PRI in response to drought stress, while delta PRI (ΔPRI), the facultative component of PRI variation due to diurnal xanthophyll cycle, showed no response to drought stress. This study confirms the ability of PRI to track temporal dynamics of mangrove carbon fluxes on both short-term and long-term scales, with the temporal variation of PRI largely affected by the long-term constitutive pigment pool size. This study highlights the potential of PRI to serve as an early and readily detectable indicator to track the response of the mangrove carbon cycle to climatic anomalies such as drought stress.


Author(s):  
Victor Danneyrolles ◽  
Dominic Cyr ◽  
Martin P. Girardin ◽  
Sylvie Gauthier ◽  
Hugo Asselin ◽  
...  

2021 ◽  
Vol 168 (3-4) ◽  
Author(s):  
James E. Overland

AbstractTwenty years ago, the Arctic was more resilient than now as sea ice was three times thicker than today. Heavier and more persistent sea ice provided a buffer against the influence of short-term climate fluctuations. Sea ice/atmospheric interactions now point to revisiting the concept of abrupt change. The recent decade has seen Arctic extreme events in climate and ecosystems including some events beyond previous records that imply increased future uncertaintly. While their numbers may increase, the distribution of the type, location, and timing of extreme events are less predictable. Recent processes include albedo shifts and increased sensitivity of sea ice to storms in marginal seas. Such new extremes include Greenland ice mass loss, sea ice as thin and mobile, coastal erosion, springtime snow loss, permafrost thaw, wildfires, and bottom to top ecosystem reorganizations, a consilience of impacts. One cause for such events is due to natural variability in a wavy tropospheric jet stream and polar vortex displacements, interacting with ongoing Arctic Amplification: temperature increases, sea ice loss, and permafrost thaw. This connecting hypothesis is validated by the variability of rare events matching interannual and spatial variability of weather. A proposed way forward for adaptation planning is through narrative/scenario approaches. Unless CO2 emissions are reduced, further multiple types of Arctic extremes are expected in the next decades with environmental and societal impacts spreading through the Arctic and beyond.


Author(s):  
Leon Diniz Alves ◽  
Raquel Martins Lana ◽  
Flávio Codeço Coelho

This study investigated a model to assess the role of climate fluctuations on dengue (DENV) dynamics from 2010 to 2019 in four Brazilian municipalities. The proposed transmission model was based on a preexisting SEI-SIR model, but also incorporates the vector vertical transmission and the vector’s egg compartment, thus allowing rainfall to be introduced to modulate egg-hatching. Temperature and rainfall satellite data throughout the decade were used as climatic model inputs. A sensitivity analysis was performed to understand the role of each parameter. The model-simulated scenario was compared to the observed dengue incidence and the findings indicate that the model was able to capture the observed seasonal dengue incidence pattern with good accuracy until 2016, although higher deviations were observed from 2016 to 2019. The results further demonstrate that vertical transmission fluctuations can affect attack transmission rates and patterns, suggesting the need to investigate the contribution of vertical transmission to dengue transmission dynamics in future assessments. The improved understanding of the relationship between different environment variables and dengue transmission achieved by the proposed model can contribute to public health policies regarding mosquito-borne diseases.


Sign in / Sign up

Export Citation Format

Share Document