scholarly journals Ocean–Atmosphere Influences on Low-Frequency Warm-Season Drought Variability in the Gulf Coast and Southeastern United States

2011 ◽  
Vol 50 (6) ◽  
pp. 1177-1186 ◽  
Author(s):  
Jason T. Ortegren ◽  
Paul A. Knapp ◽  
Justin T. Maxwell ◽  
William P. Tyminski ◽  
Peter T. Soulé

AbstractFrom the 344 state climate divisions in the conterminous United States, nine distinct regions of warm-season drought variability are identified using principal component analysis. The drought metric used is the Palmer hydrological drought index for the period 1895–2008. The focus of this paper is multidecadal drought variability in the Southeast (SEUS) and eastern Gulf South (EGS) regions of the United States, areas in which the low-frequency forcing mechanisms of warm-season drought are still poorly understood. Low-frequency drought variability in the SEUS and EGS is associated with smoothed indexed time series of major ocean–atmosphere circulation features, including two indices of spatiotemporal variability in the North Atlantic subtropical anticyclone (Bermuda high). Long-term warm-season drought conditions are significantly out of phase between the two regions. Multidecadal regimes of above- and below-average moisture in the SEUS and EGS are closely associated with slow variability in sea surface temperatures in the North Atlantic Ocean and with the summer mean position and mean strength of the Bermuda high. Multivariate linear regression indicates that 82%–92% of the low-frequency variability in warm-season moisture is explained by two of the three leading principal components of low-frequency variability in the climate indices. The findings are important for water resource managers and water-intensive industries in the SEUS and EGS. The associations identified in the paper are valuable for enhanced drought preparedness and forecasting in the study area and potentially for global models of coupled ocean–atmosphere variability.

2015 ◽  
Vol 28 (14) ◽  
pp. 5683-5698 ◽  
Author(s):  
Boksoon Myoung ◽  
Seung Hee Kim ◽  
Jinwon Kim ◽  
Menas C. Kafatos

Abstract It is reported herein that the North Atlantic Oscillation (NAO), which has been known to directly affect winter weather conditions in western Europe and the eastern United States, is also linked to surface air temperature over the broad southwestern U.S. (SWUS) region, encompassing California, Nevada, Arizona, New Mexico, Utah, and Colorado, in the early warm season. The authors have performed monthly time-scale correlations and composite analyses using three different multidecadal temperature datasets. Results from these analyses reveal that NAO-related upstream circulation positively affects not only the means, but also the extremes, of the daily maximum and minimum temperatures in the SWUS. This NAO effect is primarily linked with the positioning of upper-tropospheric anticyclones over the western United States that are associated with development of the positive NAO phase through changes in lower-tropospheric wind directions as well as suppression of precipitation and enhanced shortwave radiation at the surface. The effect is observed in the SWUS only during the March–June period because the monthly migration of anticyclones over the western United States follows the migration of the NAO center over the subtropical Atlantic Ocean. The link between the SWUS temperatures and NAO has been strengthened in the last 30-yr period (1980–2009), compared to the previous 30-yr period (1950–79). In contrast to the NAO–SWUS temperature relationship, El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) show only marginal correlation strengths in several limited regions for the same 60-yr period.


2005 ◽  
Vol 133 (10) ◽  
pp. 2894-2904 ◽  
Author(s):  
Ulrike Löptien ◽  
Eberhard Ruprecht

Abstract The North Atlantic Oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region. In the present study, the role of the synoptic systems (cyclones and anticyclones) in generating the NAO pattern is investigated. To study the intermonthly variations of the NAO, NCEP–NCAR reanalysis data are used, and for the interdecadal variations the results of a 300-yr control integration under present-day conditions of the coupled model ECHAM4/OPYC3 are analyzed. A filtering method is developed for the sea level pressure anomalies. Application of this method to each grid point yields the low-frequency variability in the sea level pressure field that is due to the synoptic systems. The low-frequency variability of the filtered and the original data are in high agreement. This indicates that the low-frequency pressure variability, and with it the variability of the NAO, is essentially caused by the distribution of the synoptic systems. The idea that the distribution of the synoptic systems is the cause of the variation of the NAO is confirmed by high correlation between the latitudinal position of the polar front over the North Atlantic and the NAO index. Since most of the low-frequency variability in sea level pressure can be explained through the distribution of the synoptic systems, the NAO seems to be a reflection of the distribution of the synoptic systems, rather than the source for variations in the cyclone tracks.


2016 ◽  
Vol 29 (13) ◽  
pp. 4905-4925 ◽  
Author(s):  
Feili Li ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan ◽  
W. Timothy Liu

Abstract The variability of the sea surface height anomaly (SSHA) in the mid- to high-latitude North Atlantic for the period of 1993–2010 was investigated using the ensemble empirical mode decomposition to identify the dominant time scales. Sea level variations in the North Atlantic subpolar gyre (SPG) are dominated by the annual cycle and the long-term increasing trend. In comparison, the SSHA along the Gulf Stream (GS) is dominated by variability at intraseasonal and annual time scales. Moreover, the sea level rise in the SPG developed at a reduced rate in the 2000s compared to rates in the 1990s, which was accompanied by a rebound in SSHA variability following a period of lower variability in the system. These changes in both apparent trend and low-frequency SSHA oscillations reveal the importance of low-frequency variability in the SPG. To identify the possible contributing factors for these changes, the heat content balance (equivalent variations in the sea level) in the subpolar region was examined. The results indicate that horizontal circulations may primarily contribute to the interannual to decadal variations, while the air–sea heat flux is not negligible at annual time scale. Furthermore, the low-frequency variability in the SPG relates to the propagation of Atlantic meridional overturning circulation (AMOC) variations from the deep-water formation region to midlatitudes in the North Atlantic, which might have the implications for recent global surface warming hiatus.


1951 ◽  
Vol 5 (4) ◽  
pp. 825-832

With the development of certain administrative frictions (concerning coal quotas, occupation costs, and the scrap metal treaty) between the western occupying powers and the German Federal Republic, early indications were that if the talk of “contractual agreements” did materialize it would reserve, for the occupying powers, wide controls over important areas of west Germany's internal and external affairs. In Washington, however, a general modification of approach was noted during the September discussions between the United States Secretary of State (Acheson), the United Kingdom Foreign Secretary (Morrison), and the French Foreign Minister (Schuman), preparatory to the Ottawa meetings of the North Atlantic Council.


Sign in / Sign up

Export Citation Format

Share Document