scholarly journals Asymmetry of the Indian Ocean Basinwide SST Anomalies: Roles of ENSO and IOD

2010 ◽  
Vol 23 (13) ◽  
pp. 3563-3576 ◽  
Author(s):  
Chi-Cherng Hong ◽  
Tim Li ◽  
LinHo ◽  
Yin-Chen Chen

A basinwide warming (cooling) in the Indian Ocean is observed following the El Niño (La Niña) mature phase, with the amplitude of the warming being significantly larger than the cooling. A composite analysis reveals that the amplitude asymmetry (positive skewness) between the warm and cold Indian Ocean basinwide sea surface temperature anomaly pattern (IOB) appears only when ENSO is concurrent with the Indian Ocean dipole (IOD). The amplitude asymmetry becomes insignificant during the ENSO-only and the IOD-only events. The physical mechanism for the amplitude asymmetry is investigated by analyzing the mixed layer heat budget based on the Simple Ocean Data Assimilation (SODA) 2.0.2 data. It is found that the positive skewness in the IOD west pole (IODW) is mainly caused by the asymmetry of ocean temperature advection, whereas the positive skewness in the IOD east pole (IODE) is caused by the asymmetry of the surface heat flux anomaly (primarily shortwave radiation) in response to the ENSO remote forcing. The asymmetry of the mixed layer depth (MLD) between warm and cold events is another factor contributing to the IOB positive skewness. The MLD in IODE during the warm events (27 m) is shallower than that of the cold events (45 m), resulting a larger (smaller) temperature tendency during the warm (cold) events. In contrast, the MLD in IODW during the warm events (44 m) is deeper than that of the cold events (37 m). Because the positive skewness in IODW is caused by the ocean temperature advection and the surface heat flux plays a damping role, a larger (smaller) MLD leads to a weaker (stronger) thermodynamic damping. Thus the asymmetry of MLD in both IODE and IODW favors a greater basinwide warming than cooling.

2004 ◽  
Vol 42 (3) ◽  
pp. 183-199 ◽  
Author(s):  
Hiroyuki Tomita ◽  
Masahisa Kubota

2015 ◽  
Vol 28 (23) ◽  
pp. 9143-9165 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han

Abstract In this study decadal (≥10 yr) sea level variations in the Indian Ocean (IO) during 1950–2012 are investigated using the Hybrid Coordinate Ocean Model (HYCOM). The solution of the main run agrees well with observations in the western-to-central IO. Results of HYCOM experiments reveal large spatial variations in the mechanisms of decadal sea level variability. Within the tropical IO (north of 20°S), decadal sea level variations achieve maximum amplitude in the south IO thermocline ridge region. They are predominantly forced by decadal fluctuations of surface wind stress associated with climate variability modes, while the impact of other processes is much smaller. The Somali coast and the western Bay of Bengal are two exceptional regions, where ocean internal (unforced) variability has large contribution. Between 28° and 20°S in the subtropical south IO, surface heat flux and ocean internal variability are the major drivers of decadal sea level variability. Heat budget analysis for the upper 300 m of this region suggests that surface heat flux affects regional thermosteric sea level through both local surface heating and heat transport by ocean circulation. In the southwestern IO south of 30°S, where stochastic winds are strong, stochastic wind forcing and its interaction with ocean internal variability generate pronounced decadal variations in sea level. The comprehensive investigation of decadal sea level variability over the IO from an oceanic perspective will contribute to decadal sea level prediction research, which has a high societal demand.


2014 ◽  
Vol 151 (3) ◽  
pp. 531-556 ◽  
Author(s):  
Matthias Sühring ◽  
Björn Maronga ◽  
Florian Herbort ◽  
Siegfried Raasch

2004 ◽  
Vol 61 (21) ◽  
pp. 2528-2543 ◽  
Author(s):  
Glenn M. Auslander ◽  
Peter R. Bannon

Abstract This study examines the diurnal response of a mixed-layer model of the dryline system to localized anomalies of surface heat flux, topography, mixed-layer depth, and inversion strength. The two-dimensional, mixed-layer model is used to simulate the dynamics of a cool, moist layer east of the dryline capped by an inversion under synoptically quiescent conditions. The modeled domain simulates the sloping topography of the U.S. Great Plains. The importance of this study can be related to dryline bulges that are areas with enhanced convergence that may trigger convection in suitable environmental conditions. All anomalies are represented by a Gaussian function in the horizontal whose amplitude, size, and orientation can be altered. A positive, surface-heat-flux anomaly produces increased mixing that creates a bulge toward the east, while a negative anomaly produces a westward bulge. Anomalies in topography show a similar trend in bulge direction with a peak giving an eastward bulge, and a valley giving a westward bulge. Anomalies in the initial mixed-layer depth yield an eastward bulge in the presence of a minimum and a westward bulge for a maximum. An anomaly in the initial inversion strength results in a westward bulge when the inversion is stronger, and an eastward bulge when the inversion is weak. The bulges observed in this study at 1800 LT ranged from 400 to 600 km along the dryline and from 25 to 80 km across the dryline. When the heating ceases at night, the entrainment and eastward movement of the line stops, and the line surges westward. This westward surge at night has little dependence on the type of anomaly applied. Whether a westward or eastward bulge was present at 1800 LT, the surge travels an equal distance toward the west. However, the inclusion of weak nocturnal friction reduces the westward surge by 100 to 200 km due to mechanical mixing of the very shallow leading edge of the surge. All model runs exhibit peaks in the mixed-layer depth along the dryline at 1800 LT caused by enhanced boundary layer convergence and entrainment of elevated mixed-layer air into the mixed layer. These peaks appear along the section of the dryline that is least parallel to the southerly flow. They vary in amplitude from 4 to 9 km depending on the amplitude of the anomaly. However, the surface-heat-flux anomalies generally result in peaks at the higher end of this interval. It is hypothesized that the formation of these peaks may be the trigger for deep convection along the dryline in the late afternoon.


2006 ◽  
Vol 19 (12) ◽  
pp. 2953-2968 ◽  
Author(s):  
Takashi Mochizuki ◽  
Hideji Kida

Abstract The seasonality of the decadal sea surface temperature (SST) anomalies and the related physical processes in the northwestern Pacific were investigated using a three-dimensional bulk mixed layer model. In the Kuroshio–Oyashio Extension (KOE) region, the strongest decadal SST anomaly was observed during December–February, while that of the central North Pacific occurred during February–April. From an examination of the seasonal heat budget of the ocean mixed layer, it was revealed that the seasonal-scale enhancement of the decadal SST anomaly in the KOE region was controlled by horizontal Ekman temperature transport in early winter and by vertical entrainment in autumn. The temperature transport by the geostrophic current made only a slight contribution to the seasonal variation of the decadal SST anomaly, despite controlling the upper-ocean thermal conditions on decadal time scales through the slow Rossby wave adjustment to the wind stress curl. When averaging over the entire KOE region, the contribution from the net sea surface heat flux was also no longer significantly detected. By examining the horizontal distributions of the local thermal damping rate, however, it was concluded that the wintertime decadal SST anomaly in the eastern KOE region was rather damped by the net sea surface heat flux. It was due to the fact that the anomalous local thermal damping of the SST anomaly resulting from the vertical entrainment in autumn was considerably strong enough to suppress the anomalous local atmospheric thermal forcing that acted to enhance the decadal SST anomaly.


2008 ◽  
Vol 21 (18) ◽  
pp. 4834-4848 ◽  
Author(s):  
Chi-Cherng Hong ◽  
Tim Li ◽  
LinHo ◽  
Jong-Seong Kug

The physical mechanism for the amplitude asymmetry of SST anomalies (SSTA) between the positive and negative phases of the Indian Ocean dipole (IOD) is investigated, using Simple Ocean Data Assimilation (SODA) and NCAR–NCEP data. It is found that a strong negative skewness appears in the IOD east pole (IODE) in the mature phase [September–November (SON)], while the skewness in the IOD west pole is insignificant. Thus, the IOD asymmetry is primarily caused by the negative skewness in IODE. A mixed-layer heat budget analysis indicates that the following two air–sea feedback processes are responsible for the negative skewness. The first is attributed to the asymmetry of the wind stress–ocean advection–SST feedback. During the IOD developing stage [June–September (JJAS)], the ocean linear advection tends to enhance the mixed-layer temperature tendency, while nonlinear advection tends to cool the ocean in both the positive and negative events, thus contributing to the negative skewness in IODE. The second process is attributed to the asymmetry of the SST–cloud–radiation (SCR) feedback. For a positive IODE, the negative SCR feedback continues with the increase of warm SSTA. For a negative IODE, the same negative SCR feedback works when the amplitude of SSTA is small. After reaching a critical value, the cold SSTA may completely suppress the mean convection and lead to cloud free conditions; a further drop of the cold SSTA does not lead to additional thermal damping so that the cold SSTA may grow faster. A wind–evaporation–SST feedback may further amplify the asymmetry induced by the aforementioned nonlinear advection and SCR feedback processes.


2019 ◽  
Vol 75 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Shun Ohishi ◽  
Hidenori Aiki ◽  
Tomoki Tozuka ◽  
Meghan F. Cronin

2009 ◽  
Vol 22 (22) ◽  
pp. 5933-5961 ◽  
Author(s):  
Tao Zhang ◽  
De-Zheng Sun ◽  
Richard Neale ◽  
Philip J. Rasch

Abstract The asymmetry between El Niño and La Niña is a key aspect of ENSO that needs to be simulated well by models in order to fully capture the role of ENSO in the climate system. Here the asymmetry between the two phases of ENSO in five successive versions of the Community Climate System Model (CCSM1, CCSM2, CCSM3 at T42 resolution, CCSM3 at T85 resolution, and the latest CCSM3 + NR, with the Neale and Richter convection scheme) is evaluated. Different from the previous studies, not only is the surface signature of ENSO asymmetry examined, but so too is its subsurface signature. By comparing the differences among these models as well as the differences between the models and the observations, an understanding of the causes of the ENSO asymmetry is sought. An underestimate of the ENSO asymmetry is noted in all of the models, but the latest version with the Neale and Richter scheme (CCSM3 + NR) is getting closer to the observations than the earlier versions. The net surface heat flux is found to damp the asymmetry in the SST field in both the models and observations, but the damping effect in the models is weaker than that in the observations, thus excluding a role of the surface heat flux in contributing to the weaker asymmetry in the SST anomalies associated with ENSO. Examining the subsurface signatures of ENSO—the thermocline depth and the associated subsurface temperature for the western and eastern Pacific—reveals the same bias; that is, the asymmetry in the models is weaker than that in the observations. The analysis of the corresponding Atmospheric Model Intercomparison Project (AMIP) runs in conjunction with the coupled runs suggests that the weaker asymmetry in the subsurface signatures in the models is related to the lack of asymmetry in the zonal wind stress over the central Pacific, which in turn is due to a lack of sufficient asymmetry in deep convection (i.e., the nonlinear dependence of the deep convection on SST). In particular, the lack of a westward shift in the deep convection in the models in response to a cold phase SST anomaly is found as a common factor that is responsible for the weak asymmetry in the models. It is also suggested that a more eastward extension of the deep convection in response to a warm phase SST anomaly may also help to increase the asymmetry of ENSO. The better performance of CCSM3 + NR is apparently linked to an enhanced convection over the eastern Pacific during the warm phase of ENSO. Apparently, either a westward shift of deep convection in response to a cold phase SST anomaly or an increase of convection over the eastern Pacific in response to a warm phase SST anomaly leads to an increase in the asymmetry of zonal wind stress and therefore an increase in the asymmetry of subsurface signal, favoring an increase in ENSO asymmetry.


Sign in / Sign up

Export Citation Format

Share Document