inversion strength
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 51 (1) ◽  
pp. 39-46
Author(s):  
R. SURESH

The low level inversion, be it that of ground based or elevated, plays a significant role in the dispersion of polluted particles and in aviation meteorology. The rate of rise of the ground based inversion top and the base of elevated inversion causes the decrease of inversion strength and thereby permits vertical mixing of pollutants as the stability of the atmosphere is reduced. A simple thermodynamical model using the global radiation and vertical temperature profile has been proposed to estimate the rate of rise of (i) the ground based inversion top and (ii) the base of the elevated inversion. The depth of inversion thus estimated can be used in the pollution/fog dispersion models. The model is simple and operationally practicable. The limitations of the model are also discussed.


2021 ◽  
Author(s):  
Siddhant Gupta ◽  
Greg M. McFarquhar ◽  
Joseph R. O'Brien ◽  
Michael R. Poellot ◽  
David J. Delene ◽  
...  

Abstract. Aerosol-cloud-precipitation interactions (ACIs) provide the greatest source of uncertainties in predicting changes in Earth’s energy budget due to poor representation of marine stratocumulus and the associated ACIs in climate models. Using in situ data from 329 cloud profiles across 24 research flights from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign in September 2016, August 2017, and October 2018, it is shown that contact between above-cloud biomass-burning aerosols and marine stratocumulus over the southeast Atlantic Ocean was associated with precipitation suppression and a decrease in the precipitation susceptibility (So) to aerosols. The 173 “contact” profiles with aerosol concentration (Na) greater than 500 cm−3 within 100 m above cloud tops had 50 % lower precipitation rate (Rp) and 20 % lower So, on average, compared to 156 “separated” profiles with Na less than 500 cm−3 up to at least 100 m above cloud tops. Contact and separated profiles had statistically significant differences in droplet concentration (Nc) and effective radius (Re) (95 % confidence intervals from a two-sample t-test are reported). Contact profiles had 84 to 90 cm−3 higher Nc and 1.4 to 1.6 μm lower Re compared to separated profiles. In clean boundary layers (below-cloud Na less than 350 cm−3), contact profiles had 25 to 31 cm−3 higher Nc and 0.2 to 0.5 μm lower Re. In polluted boundary layers (below-cloud Na exceeding 350 cm−3), contact profiles had 98 to 108 cm−3 higher Nc and 1.6 to 1.8 μm lower Re. On the other hand, contact and separated profiles had statistically insignificant differences between the average liquid water path, cloud thickness, and meteorological parameters like surface temperature, lower tropospheric stability, and estimated inversion strength. These results suggest the changes in cloud properties were driven by ACIs rather than meteorological effects, and the existing relationships between Rp and Nc must be adjusted to account for the role of ACIs.


2020 ◽  
Vol 33 (21) ◽  
pp. 9391-9407
Author(s):  
Sonika Shahi ◽  
Jakob Abermann ◽  
Georg Heinrich ◽  
Rainer Prinz ◽  
Wolfgang Schöner

AbstractStrong and thick temperature inversions are key components of the Arctic climate system and it is important to study and better understand them. The present study quantifies the temporal and spatial variability of surface-based inversions (SBIs) and elevated inversions (EIs) over Greenland, as derived from the ERA-Interim (ERA-I) dataset for the period 1979–2017. The seasonal and multiannual variability of inversion strength, thickness, and frequency are examined. Our results clearly show regional as well as seasonal patterns of both SBIs and EIs. SBIs are more frequent and stronger than EIs, and the spatial variability of inversions is larger during winter and smaller during summer. Furthermore, during summer, there has been a trend toward stronger (0.3 K decade−1), thicker (12 m decade−1), and more frequent (3% decade−1) SBIs in the southern part of Greenland, especially in the past two decades. Evidently, the strengthening of the anticyclone over Greenland causes a reduction of cloud cover, which manifests in an increase in SBI strength and thickness, particularly in the southern part of Greenland.


2020 ◽  
Vol 81 ◽  
pp. 17
Author(s):  
E.E. Avci ◽  
E. Senocak ◽  
İ. Akgün ◽  
E. Timurtas ◽  
İ. Demirbüken ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 3041-3060
Author(s):  
Jihoon Shin ◽  
Sungsu Park

Abstract. We extend upon previous work to examine the relationship between low-level cloud amount (LCA) and various proxies for LCA – estimated low-level cloud fraction (ELF), lower tropospheric stability (LTS), and estimated inversion strength (EIS) – by low-level cloud type (CL) over the globe using individual surface and upper-air observations. Individual CL has its own distinct environmental structure, and therefore our extended analysis by CL can provide insights into the strengths and weaknesses of various proxies and help to improve them. Overall, ELF performs better than LTS and EIS in diagnosing the variations in LCA among various CLs, indicating that a previously identified superior performance of ELF compared to LTS and EIS as a global proxy for LCA comes from its realistic correlations with various CLs rather than with a specific CL. However, ELF, LTS, and EIS have a problem in diagnosing the changes in LCA when noCL (no low-level cloud) is reported and also when Cu (cumulus) is reported over deserts where background stratus does not exist. This incorrect diagnosis of noCL as a cloudy condition is more clearly seen in the analysis of individual CL frequencies binned by proxy values. If noCL is excluded, ELF, LTS, and EIS have good inter-CL correlations with the amount when present (AWP) of individual CLs. In the future, an advanced ELF needs to be formulated to deal with the decrease in LCA when the inversion base height is lower than the lifting condensation level to diagnose cumulus updraft fraction, as well as the amount of stratiform clouds and detrained cumulus, and to parameterize the scale height as a function of appropriate environmental variables.


2019 ◽  
Vol 76 (11) ◽  
pp. 3505-3527 ◽  
Author(s):  
Carsten Abraham ◽  
Adam H. Monahan

Abstract The evolution of profiles of meteorological state variables during nights with and without transitions in the nocturnal stably stratified boundary layer (SBL) between weakly stable (wSBL) and very stable (vSBL) regimes, as classified by a hidden Markov model, is examined at nine different tower sites. During wSBL-to-vSBL transitions, inversion strengths increase, near-surface winds decelerate, and atmospheric layers vertically decouple. Turbulence kinetic energy (TKE) steadily decreases before wSBL-to-vSBL transitions and fluctuations of the vertical velocity become weak. In contrast to land-based sites where wSBL-to-vSBL transitions are normally caused by surface cooling, at sea-based stations the transitions generally are initiated by advection of warm air aloft. The vSBL-to-wSBL transition is characterized by a fast breakdown of the inversion strength, acceleration of wind profiles, and a restored vertical coupling of the atmospheric flow. TKE recovers on time scales of minutes first in atmospheric levels between 50 and 100 m. Profiles of state variables for the two different regimes during very persistent nights (nights without SBL regime transitions) are clearly separated and similar to structures during nights with transitions away from transition times. During very persistent nights the wind conditions stay relatively steady. Similarly, the temperature is steady after an initial adjustment time at sunset (wSBL) or shortly after sunset (vSBL). Even though nights with and without transitions are a common feature of the SBL, there is no clear indicator in Reynolds-averaged mean variables that distinguishes very persistent nights from nights with transitions.


2019 ◽  
Vol 58 (10) ◽  
pp. 2197-2215 ◽  
Author(s):  
Andrew M. Dzambo ◽  
Tristan L’Ecuyer ◽  
Ousmane O. Sy ◽  
Simone Tanelli

AbstractDuring the Observations of Aerosols above Clouds and Their Interactions (ORACLES) 2016 and 2017 field experiments, the Third Generation Advanced Precipitation and Cloud Radar (APR-3) flew aboard the NASA P-3 aircraft taking over 10 million profiles of stratocumulus clouds in the southeast Atlantic Ocean. This study documents cloud structure, precipitation frequency and intensity, and atmospheric stability for each flight during both field experiments. A larger cloud fraction was estimated for 2016, likely due to a larger estimated inversion strength (EIS) in the experiment area (between 6 and 10 K) compared to 2017 where EIS was on average 4–6 K lower. We used an optimal estimation retrieval to derive precipitation rates for all measurable clouds during both experiments. Over 30% of clouds observed during the 2016 experiment exhibited precipitation reaching the surface, but retrieved drizzle rates were below 0.01 mm h−1 in all but 40% of these profiles. This is in sharp contrast to the 2017 campaign where over 53% of precipitating profiles had rainfall rates larger than 0.01 mm h−1. The differences in cloud and rain fractions between the two years are most likely due to differences in the sampling environments; however, enough variations in cloud, virga, and rain fraction exist for similar environmental conditions such that additional analysis of cloud and aerosol interactions—specifically their effect on precipitation processes—needs further exploration. The extensive APR-3 sampling of drizzling stratocumulus under similar thermodynamic conditions provides a rich dataset for examining the influence of biomass burning aerosols on cloud fraction, morphology, and precipitation characteristics in this climatically important region.


2019 ◽  
Author(s):  
Jihoon Shin ◽  
Sungsu Park

Abstract. We extend upon previous work to examine the relationship between low-level cloud amount (LCA) and various proxies for LCA – estimated low-level cloud fraction (ELF), lower-tropospheric stability (LTS), estimated inversion strength (EIS), and estimated cloud-top entrainment index (ECTEI) – by low-level cloud types (CL) over the globe using individual surface and upper-air observations. Individual CL has its own distinct environmental structure, and therefore our extended analysis by CL can provide insights into the strength and weakness of various proxies and help to improve them. Overall, ELF performs better than LTS/EIS in diagnosing the variations in LCA among various CLs, indicating that a previously identified superior performance of ELF to LTS/EIS as a global proxy for LCA comes from its realistic correlations with various CLs rather than with a specific CL. However, ELF as well as LTS/EIS has a problem in diagnosing the decrease in LCA when CL0 (no low-level cloud) is reported and the increase of LCA when CL12 (cumulus) is reported over the deserts where background stratus does not exist. This incorrect diagnosis of CL0 as a cloudy condition is more clearly seen in the analysis of individual CL frequencies binned by proxy values. If CL0 is excluded, all ELF/LTS/EIS have good inter-CL correlations with the amount-when-present (AWP) of individual CLs. In future, an advanced ELF needs to be formulated to deal with the dissipation of LCA when the inversion base height is lower than the lifting condensation level, to diagnose cumulus updraft fraction as well as the amount of stratiform clouds and detrained cumulus, and to parameterize the scale height as a function of appropriate environmental variables.


2019 ◽  
Vol 19 (8) ◽  
pp. 5635-5660 ◽  
Author(s):  
Sungsu Park ◽  
Jihoon Shin

Abstract. Based on the decoupling parameterization of the cloud-topped planetary boundary layer, a simple equation is derived to compute the inversion height. In combination with the lifting condensation level and the amount of water vapor in near-surface air, we propose a low-level cloud suppression parameter (LCS) and estimated low-level cloud fraction (ELF), as new proxies for the analysis of the spatiotemporal variation of the global low-level cloud amount (LCA). Individual surface and upper-air observations are used to compute LCS and ELF as well as lower-tropospheric stability (LTS), estimated inversion strength (EIS), and estimated cloud-top entrainment index (ECTEI), three proxies for LCA that have been widely used in previous studies. The spatiotemporal correlations between these proxies and surface-observed LCA were analyzed. Over the subtropical marine stratocumulus deck, both LTS and EIS diagnose seasonal–interannual variations of LCA well. However, their use as a global proxy for LCA is limited due to their weaker and inconsistent relationship with LCA over land. EIS is anti-correlated with the decoupling strength more strongly than it is correlated with the inversion strength. Compared with LTS and EIS, ELF and LCS better diagnose temporal variations of LCA, not only over the marine stratocumulus deck but also in other regions. However, all proxies have a weakness in diagnosing interannual variations of LCA in several subtropical stratocumulus decks. In the analysis using all data, ELF achieves the best performance in diagnosing spatiotemporal variation of LCA, explaining about 60 % of the spatial–seasonal–interannual variance of the seasonal LCA over the globe, which is a much larger percentage than those explained by LTS (2 %) and EIS (4 %). Our study implies that accurate prediction of inversion base height and lifting condensation level is a key factor necessary for successful simulation of global low-level clouds in general circulation models (GCMs). Strong spatiotemporal correlation between ELF (or LCS) and LCA identified in our study can be used to evaluate the performance of GCMs, identify the source of inaccurate simulation of LCA, and better understand climate sensitivity.


Sign in / Sign up

Export Citation Format

Share Document