scholarly journals Multiscale Momentum Flux and Diffusion due to Whitecapping in Wave–Current Interactions

2011 ◽  
Vol 41 (5) ◽  
pp. 837-856 ◽  
Author(s):  
Juan M. Restrepo ◽  
Jorge M. Ramírez ◽  
James C. McWilliams ◽  
Michael Banner

Abstract Whitecapping affects the Reynolds stresses near the ocean surface. A model for the conservative dynamics of waves and currents is modified to include the averaged effect of multiple, short-lived, and random wave-breaking events on large spatiotemporal scales. In this study’s treatment, whitecapping is parameterized stochastically as an additive uncertainty in the fluid velocity. It is coupled to the Stokes drift as well as to the current velocity in the form of nonlinear momentum terms in the vortex force and the Bernoulli head. The effects of whitecapping on tracer dynamics, mass balances, and boundary conditions are also derived here. Whitecapping also modifies the dynamics and the size of the sea surface boundary layer. This study does not resolve the boundary layer, however, the authors appeal to traditional viscosity parameterizations to include these diffusive effects, modified for the context of wave–current interactions. The parameterized breaking velocity field is endowed with empirical rules that link their generation in space and time to properties and dynamics of wave groups. The energy convergence rate of wave groups is used as an indicator for the onset of wave breaking. A methodology is proposed for evaluating this criterion over an evolving random Gaussian model for the ocean surface. The expected spatiotemporal statistics of the breaking events are not imposed, but rather computed, and are found to agree with the general expectation of its Poisson character. The authors also compute, rather than impose, the shear stress associated with the breaking events and find it to agree with theoretical expectations. When the relative role played by waves and breaking events on currents is compared, this study finds that waves, via the vortex force, purely advect the vorticity of currents that are essentially only dependent on transverse coordinates. The authors show that currents will tend to get rougher in the direction of steady wind, when whitecapping is present. Breaking events can alter and even suppress the rate of advection in the vortex force. When comparing the rates of transport, the waves will tend to dominate the short term and the whitecapping of the long-term rate.

2009 ◽  
Vol 39 (5) ◽  
pp. 1077-1096 ◽  
Author(s):  
Gregory P. Gerbi ◽  
John H. Trowbridge ◽  
Eugene A. Terray ◽  
Albert J. Plueddemann ◽  
Tobias Kukulka

Abstract Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.


2018 ◽  
Vol 48 (9) ◽  
pp. 1921-1940 ◽  
Author(s):  
Dong Wang ◽  
Tobias Kukulka ◽  
Brandon G. Reichl ◽  
Tetsu Hara ◽  
Isaac Ginis ◽  
...  

AbstractBased on a large-eddy simulation approach, this study investigates the response of the ocean surface boundary layer (OSBL) and Langmuir turbulence (LT) to extreme wind and complex wave forcing under tropical cyclones (TCs). The Stokes drift vector that drives LT is determined from spectral wave simulations. During maximum TC winds, LT substantially enhances the entrainment of cool water, causing rapid OSBL deepening. This coincides with relatively strong wave forcing, weak inertial currents, and shallow OSBL depth , measured by smaller ratios of , where denotes a Stokes drift decay length scale. LT directly affects a near-surface layer whose depth is estimated from enhanced anisotropy ratios of velocity variances. During rapid OSBL deepening, is proportional to , and LT efficiently transports momentum in coherent structures, locally enhancing shear instabilities in a deeper shear-driven layer, which is controlled by LT. After the TC passes, inertial currents are stronger and is greater while is shallower and proportional to . During this time, the LT-affected surface layer is too shallow to directly influence the deeper shear-driven layer, so that both layers are weakly coupled. At the same time, LT reduces surface currents that play a key role in the surface energy input at a later stage. These two factors contribute to relatively small TKE levels and entrainment rates after TC passage. Therefore, our study illustrates that inertial currents need to be taken into account for a complete understanding of LT and its effects on OSBL dynamics in TC conditions.


Author(s):  
Xingchi Wang ◽  
Tobias Kukulka

AbstractTurbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Based on a Large Eddy Simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik-Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments, whose winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases due to reduced TKE production. Stage 2 is characterized by TKE increasing with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values due to inertial resonance and non-equilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts due to slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian TKE production exceeding Stokes TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier-Stokes equation models indicate that Stokes production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Stephen E. Belcher ◽  
Alan L. M. Grant ◽  
Kirsty E. Hanley ◽  
Baylor Fox-Kemper ◽  
Luke Van Roekel ◽  
...  

2021 ◽  
Author(s):  
Gregory Wagner ◽  
Andre Souza ◽  
Adeline Hillier ◽  
Ali Ramadhan ◽  
Raffaele Ferrari

<p>Parameterizations of turbulent mixing in the ocean surface boundary layer (OSBL) are key Earth System Model (ESM) components that modulate the communication of heat and carbon between the atmosphere and ocean interior. OSBL turbulence parameterizations are formulated in terms of unknown free parameters estimated from observational or synthetic data. In this work we describe the development and use of a synthetic dataset called the “LESbrary” generated by a large number of idealized, high-fidelity, limited-area large eddy simulations (LES) of OSBL turbulent mixing. We describe how the LESbrary design leverages a detailed understanding of OSBL conditions derived from observations and large scale models to span the range of realistically diverse physical scenarios. The result is a diverse library of well-characterized “synthetic observations” that can be readily assimilated for the calibration of realistic OSBL parameterizations in isolation from other ESM model components. We apply LESbrary data to calibrate free parameters, develop prior estimates of parameter uncertainty, and evaluate model errors in two OSBL parameterizations for use in predictive ESMs.</p>


1965 ◽  
Vol 22 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. A. Townsend

In a barotropic fluid, a free turbulent flow induces a fluctuating potential flow which is determined by the instantaneous flow near the edge of the turbulent flow. If the surrounding fluid is stably stratified, internal wave-motions are possible and, in general, wave-energy accumulates until it is sufficient to modify the turbulent flow. Here the growth of wave-motion from rest is examined with particular reference to the atmospheric problem of wave excitation by the surface boundary layer. Wind shear is supposed negligible outside the turbulent flow and the disturbances from the boundary layer are assumed to travel with a convection velocity V relative to the upper air. For times large compared with {−g/ρ(dρ/dz)}−½ (ρ is the potential density), most of the wave-energy resides in components of phase-velocity near the convection velocity. For a model atmosphere with increased stability above a tropopause, this resonance mechanism leads to the formation of wave-groups with crests at right-angles to the convection velocity and wavelengths near 2πV[−g/ρ(dρ/dz)]−½. Using likely values for the surface disturbances, wave-amplitudes of order 100 m can develop within several hours of the initiation of the boundary layer but sufficient amplitude to produce overturning or breaking is unlikely within a reasonable time.


2018 ◽  
Vol 48 (9) ◽  
pp. 2103-2125 ◽  
Author(s):  
Jun-Hong Liang ◽  
Xiaoliang Wan ◽  
Kenneth A. Rose ◽  
Peter P. Sullivan ◽  
James C. McWilliams

ABSTRACTThe horizontal dispersion of materials with a constant rising speed under the exclusive influence of ocean surface boundary layer (OSBL) flows is investigated using both three-dimensional turbulence-resolving Lagrangian particle trajectories and the classical theory of dispersion in bounded shear currents generalized for buoyant materials. Dispersion in the OSBL is caused by the vertical shear of mean horizontal currents and by the turbulent velocity fluctuations. It reaches a diffusive regime when the equilibrium vertical material distribution is established. Diffusivity from the classical shear dispersion theory agrees reasonably well with that diagnosed using three-dimensional particle trajectories. For weakly buoyant materials that can be mixed into the boundary layer, shear dispersion dominates turbulent dispersion. For strongly buoyant materials that stay at the ocean surface, shear dispersion is negligible compared to turbulent dispersion. The effective horizontal diffusivity due to shear dispersion is controlled by multiple factors, including wind speed, wave conditions, vertical diffusivity, mixed layer depth, latitude, and buoyant rising speed. With all other meteorological and hydrographic conditions being equal, the effective horizontal diffusivity is larger in wind-driven Ekman flows than in wave-driven Ekman–Stokes flows for weakly buoyant materials and is smaller in Ekman flows than in Ekman–Stokes flows for strongly buoyant materials. The effective horizontal diffusivity is further reduced when enhanced mixing by breaking waves is included. Dispersion by OSBL flows is weaker than that by submesoscale currents at a scale larger than 100 m. The analytic framework will improve subgrid-scale modeling in realistic particle trajectory models using currents from operational ocean models.


2017 ◽  
Vol 47 (12) ◽  
pp. 2863-2886 ◽  
Author(s):  
Qing Li ◽  
Baylor Fox-Kemper

AbstractLarge-eddy simulations (LESs) with various constant wind, wave, and surface destabilizing surface buoyancy flux forcing are conducted, with a focus on assessing the impact of Langmuir turbulence on the entrainment buoyancy flux at the base of the ocean surface boundary layer. An estimate of the entrainment buoyancy flux scaling is made to best fit the LES results. The presence of Stokes drift forcing and the resulting Langmuir turbulence enhances the entrainment rate significantly under weak surface destabilizing buoyancy flux conditions, that is, weakly convective turbulence. In contrast, Langmuir turbulence effects are moderate when convective turbulence is dominant and appear to be additive rather than multiplicative to the convection-induced mixing. The parameterized unresolved velocity scale in the K-profile parameterization (KPP) is modified to adhere to the new scaling law of the entrainment buoyancy flux and account for the effects of Langmuir turbulence. This modification is targeted on common situations in a climate model where either Langmuir turbulence or convection is important and may overestimate the entrainment when both are weak. Nevertheless, the modified KPP is tested in a global climate model and generally outperforms those tested in previous studies. Improvements in the simulated mixed layer depth are found, especially in the Southern Ocean in austral summer.


Author(s):  
Jianguo Yuan ◽  
Jun-Hong Liang

AbstractLarge-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.


Sign in / Sign up

Export Citation Format

Share Document