Current and Density Observations of Packets of Nonlinear Internal Waves on the Outer New Jersey Shelf

2011 ◽  
Vol 41 (5) ◽  
pp. 994-1008 ◽  
Author(s):  
W. J. Teague ◽  
H. W. Wijesekera ◽  
W. E. Avera ◽  
Z. R. Hallock
2011 ◽  
Vol 41 (5) ◽  
pp. 994-1008 ◽  
Author(s):  
W. J. Teague ◽  
H. W. Wijesekera ◽  
W. E. Avera ◽  
Z. R. Hallock

Abstract Closely spaced observations of nonlinear internal waves (NLIWs) were made on the outer continental shelf off New Jersey in June 2009. Nearly full water column measurements of current velocity were made with four acoustic Doppler current profilers (ADCPs) that were moored about 5 km apart on the bottom along a line approximately normal to the bathymetry between water depths of 67 and 92 m. Density profiles were obtained from two vertical strings of temperature and conductivity sensors that were deployed near each of the interior ADCP moorings. In addition, a towed ScanFish provided profiles and fixed-level records of temperature and salinity through several NLIW packets near the moorings. Several case studies were selected to describe the propagation of the NLIWs. One to three solitary waves of depression were observed in five selected packets. There were also occurrences of multiple-phase dispersive wave packets. The average propagation speed corrected for advection of the observed waves was 0.51 ± 0.09 m s−1. The waves were directed primarily shoreward (~northwestward) along the mooring line with average wavelengths and periods of about 300 m and 10 min, respectively. Wave amplitudes and energies decreased with decreasing water depth. The observed wave parameters can be locally described by a two-layer Korteweg–de Vries (KdV) model, except for the decreasing amplitudes, which may be due to shear-induced dissipation and/or bottom drag. The various complementary observations utilized in this study present a unique description of NLIWs.


Author(s):  
A. Scotti ◽  
R. C. Beardsley ◽  
B. Butman ◽  
J. Pineda

2010 ◽  
Vol 17 (4) ◽  
pp. 345-360 ◽  
Author(s):  
E. L. Shroyer ◽  
J. N. Moum ◽  
J. D. Nash

Abstract. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.


Sign in / Sign up

Export Citation Format

Share Document