scholarly journals WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene

2018 ◽  
Vol 99 (9) ◽  
pp. 1907-1924 ◽  
Author(s):  
J. Ching ◽  
G. Mills ◽  
B. Bechtel ◽  
L. See ◽  
J. Feddema ◽  
...  

AbstractThe World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.

2021 ◽  
Vol 70 (1) ◽  
pp. 19-33
Author(s):  
Tamás Gál ◽  
Nóra Skarbit ◽  
Gergely Molnár ◽  
János Unger

This study evaluates the pattern of a nighttime climate index namely the tropical nights (Tmin ≥ 20ºC) during the 21st century in several different sized cities in the Carpathian Basin. For the modelling, MUKLIMO_3 microclimatic model and the cuboid statistical method were applied. In order to ensure the proper representation of the thermal characteristics of an urban landscape, the Local Climate Zone (LCZ) system was used as landuse information. For this work, LCZ maps were produced using WUDAPT methodology. The climatic input of the model was the Carpatclim dataset for the reference period (1981–2010) and EURO-CORDEX regional model outputs for the future time periods (2021–2050, 2071–2100) and emission scenarios (RCP4.5, RCP8.5). As results show, there would be a remarkable increase in the number of tropical nights along the century, and there is a clearly recognizable increase owing to urban landform. In the near past, the number of the index was 6–10 nights higher in the city core than the rural area where the number of this index was negligible. In the near future this urban-rural trend is the same, however, there is a slight increase (2–5 nights) in the index in city cores. At the end of the century, the results of the two emission scenarios become distinct. In the case of RCP4.5 the urban values are about 15–25 nights, what is less stressful compared to the 30–50 nights according to RCP8.5. The results clearly highlight that the effect of urban climate and climate change would cause serious risk for urban dwellers, therefore it is crucial to perform climate mitigation and adaptation actions on both global and urban scales.


2018 ◽  
Vol 28 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Thomas Hickmann ◽  
Fee Stehle

Numerous scholars have lately highlighted the importance of cities in the global response to climate change. However, we still have little systematic knowledge on the evolution of urban climate politics in the Global South. In particular, we lack empirical studies that examine how local climate actions arise in political-administrative systems of developing and emerging economies. Therefore, this article adopts a multilevel governance perspective to explore the climate mitigation responses of three major cities in South Africa by looking at their vertical and horizontal integration in the wider governance framework. In the absence of a coherent national climate policy, Johannesburg, Cape Town, and Durban have developed distinct climate actions within their jurisdictions. In their effort to address climate change, transnational city networks have provided considerable technical support to these cities. Yet, substantial domestic political-economic obstacles hinder the three cities to develop a more ambitious stance on climate change.


2021 ◽  
Vol 14 (11) ◽  
pp. 57-63
Author(s):  
Abujam Manglem Singh

Understanding local climate variability and change is necessary for improving future climate forecasts and also aids preparation of informed area specific climate mitigation and adaptation strategies. Climate change at local scale is best revealed by studying observed variabilities and trends in rainfall and temperature data through statistical techniques. Therefore, this study employed standard deviation and coefficient of variability and Mann-Kendall test and Sen slope determination non-parametric techniques to perform variability and trends analyses across multiple temporal scales on climate data obtained at Imphal (Tulihal) station. The results indicate prevalence of different patterns between rainfall and temperature trends. Except for the positive trends in the month May (2mm/yr) and in the pre-monsoon season (9.49mm/yr), no other discernable patterns in rainfall data were observed. Temperature trends, on the other hand, witnessed significant positive increase in maximum, minimum and mean values. For mean temperature, all months registered significant increasing trends. At the annual and seasonal scales also, maximum, minimum and mean temperatures have increased although with varying rates. It is noteworthy to mention that temperature change has occurred at two distinct phases; before 1993 slow warming and after 1993 rapid warming. Temporal distribution of annual mean temperature captures this pattern more vividly as warming rate before 1993 was less than 0.01 compared to 0.450c/year in the latter phase. Overall, it can be said that rainfall has higher variability with very little or no pattern but temperature distribution suggests existence of strong trends in the observed data.


2021 ◽  
Vol 55 (4) ◽  
pp. 27-71
Author(s):  
Ilona Bárány Kevei ◽  
Zoltán Zboray ◽  
Márton Kiss

In this study the changes in the nighttime heat load in Carpathian Basin cities during the 21st century were examined. To quantify the heat load, the tropical night climate index was used. The MUKLIMO_3 local scale climate model was used to describe the urban processes and the land use classes were defined by the local climate zones. The expected change was examined over three periods: the 1981–2010 was taken as reference period using the Carpatclim database and the 2021–2050 and 2071–2100 future periods using EURO-CORDEX regional model simulation data for two scenarios (RCP4.5 and RCP8.5). To combine the detailed spatial resolution and the long time series, a downscaling method was applied. Our results show that spectacular changes could be in the number of tropical nights during the 21st century and the increasing effect of the urban landform is obvious. In the near future, a slight increase can be expected in the number of tropical nights, which magnitude varies from city to city and there is no major difference between the scenarios. However, at the end of the century the results of the two scenarios differ: the values can be 15-25 nights in case of RCP4.5 and 30-50 nights in case of RCP8.5. The results show that dwellers could be exposed to high heat load in the future, as the combined effect of climate change and urban climate, thus developing various mitigation and adaptation strategies is crucial.


2020 ◽  
Vol 34 (3) ◽  
pp. 374-390
Author(s):  
Richard Beardsworth

This article considers what is necessary politically to respond to the empirical challenge of climate change and to the present calls of climate science (a carbon-neutral world by 2050). Its basic argument is that, among an array of national and international actors, it remains the state that can drive a successful politics of climate change. Without the heavy-lifting of the state and the state’s ability as a national entity to motivate behavioural change, neither the daunting scale nor imminent time-horizon of climate mitigation and adaptation is possible. The article shows how this specific argument, far from pitching anew nationalism against internationalism, can bring the two presently polarized movements together. The article then suggests that if these arguments are essentially valid, the discipline of International Relations needs to focus much more on the climate challenge, re-engage with its traditions of thought on the state and help harbour a specific disposition or mindset in the research and teaching of the discipline for the next decades: a fierce optimism.


2021 ◽  
Vol 167 (1-2) ◽  
Author(s):  
Antje Otto ◽  
Kristine Kern ◽  
Wolfgang Haupt ◽  
Peter Eckersley ◽  
Annegret H. Thieken

AbstractClimate mitigation and climate adaptation are crucial tasks for urban areas and can involve synergies as well as trade-offs. However, few studies have examined how mitigation and adaptation efforts relate to each other in a large number of differently sized cities, and therefore we know little about whether forerunners in mitigation are also leading in adaptation or if cities tend to focus on just one policy field. This article develops an internationally applicable approach to rank cities on climate policy that incorporates multiple indicators related to (1) local commitments on mitigation and adaptation, (2) urban mitigation and adaptation plans and (3) climate adaptation and mitigation ambitions. We apply this method to rank 104 differently sized German cities and identify six clusters: climate policy leaders, climate adaptation leaders, climate mitigation leaders, climate policy followers, climate policy latecomers and climate policy laggards. The article seeks explanations for particular cities’ positions and shows that coping with climate change in a balanced way on a high level depends on structural factors, in particular city size, the pathways of local climate policies since the 1990s and funding programmes for both climate mitigation and adaptation.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


Sign in / Sign up

Export Citation Format

Share Document