scholarly journals Projections of the urban and intra-urban scale thermal effects of climate change in the 21st century for cities in the Carpathian Basin

2021 ◽  
Vol 70 (1) ◽  
pp. 19-33
Author(s):  
Tamás Gál ◽  
Nóra Skarbit ◽  
Gergely Molnár ◽  
János Unger

This study evaluates the pattern of a nighttime climate index namely the tropical nights (Tmin ≥ 20ºC) during the 21st century in several different sized cities in the Carpathian Basin. For the modelling, MUKLIMO_3 microclimatic model and the cuboid statistical method were applied. In order to ensure the proper representation of the thermal characteristics of an urban landscape, the Local Climate Zone (LCZ) system was used as landuse information. For this work, LCZ maps were produced using WUDAPT methodology. The climatic input of the model was the Carpatclim dataset for the reference period (1981–2010) and EURO-CORDEX regional model outputs for the future time periods (2021–2050, 2071–2100) and emission scenarios (RCP4.5, RCP8.5). As results show, there would be a remarkable increase in the number of tropical nights along the century, and there is a clearly recognizable increase owing to urban landform. In the near past, the number of the index was 6–10 nights higher in the city core than the rural area where the number of this index was negligible. In the near future this urban-rural trend is the same, however, there is a slight increase (2–5 nights) in the index in city cores. At the end of the century, the results of the two emission scenarios become distinct. In the case of RCP4.5 the urban values are about 15–25 nights, what is less stressful compared to the 30–50 nights according to RCP8.5. The results clearly highlight that the effect of urban climate and climate change would cause serious risk for urban dwellers, therefore it is crucial to perform climate mitigation and adaptation actions on both global and urban scales.

2021 ◽  
Vol 55 (4) ◽  
pp. 27-71
Author(s):  
Ilona Bárány Kevei ◽  
Zoltán Zboray ◽  
Márton Kiss

In this study the changes in the nighttime heat load in Carpathian Basin cities during the 21st century were examined. To quantify the heat load, the tropical night climate index was used. The MUKLIMO_3 local scale climate model was used to describe the urban processes and the land use classes were defined by the local climate zones. The expected change was examined over three periods: the 1981–2010 was taken as reference period using the Carpatclim database and the 2021–2050 and 2071–2100 future periods using EURO-CORDEX regional model simulation data for two scenarios (RCP4.5 and RCP8.5). To combine the detailed spatial resolution and the long time series, a downscaling method was applied. Our results show that spectacular changes could be in the number of tropical nights during the 21st century and the increasing effect of the urban landform is obvious. In the near future, a slight increase can be expected in the number of tropical nights, which magnitude varies from city to city and there is no major difference between the scenarios. However, at the end of the century the results of the two scenarios differ: the values can be 15-25 nights in case of RCP4.5 and 30-50 nights in case of RCP8.5. The results show that dwellers could be exposed to high heat load in the future, as the combined effect of climate change and urban climate, thus developing various mitigation and adaptation strategies is crucial.


2021 ◽  
Vol 55 (3) ◽  
pp. 27-71
Author(s):  
Nóra Skarbit ◽  
Tamás Gál ◽  
Gergely Molnár ◽  
János Unger

In this study the changes in the nighttime heat load in Carpathian Basin cities during the 21st century were examined. To quantify the heat load, the tropical night climate index was used. The MUKLIMO_3 local scale climate model was used to describe the urban processes and the land use classes were defined by the local climate zones. The expected change was examined over three periods: the 1981–2010 was taken as reference period using the Carpatclim database and the 2021–2050 and 2071–2100 future periods using EURO-CORDEX regional model simulation data for two scenarios (RCP4.5 and RCP8.5). To combine the detailed spatial resolution and the long time series, a downscaling method was applied. Our results show that spectacular changes could be in the number of tropical nights during the 21st century and the increasing effect of the urban landform is obvious. In the near future, a slight increase can be expected in the number of tropical nights, which magnitude varies from city to city and there is no major difference between the scenarios. However, at the end of the century the results of the two scenarios differ: the values can be 15-25 nights in case of RCP4.5 and 30-50 nights in case of RCP8.5. The results show that dwellers could be exposed to high heat load in the future, as the combined effect of climate change and urban climate, thus developing various mitigation and adaptation strategies is crucial.


2018 ◽  
Vol 28 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Thomas Hickmann ◽  
Fee Stehle

Numerous scholars have lately highlighted the importance of cities in the global response to climate change. However, we still have little systematic knowledge on the evolution of urban climate politics in the Global South. In particular, we lack empirical studies that examine how local climate actions arise in political-administrative systems of developing and emerging economies. Therefore, this article adopts a multilevel governance perspective to explore the climate mitigation responses of three major cities in South Africa by looking at their vertical and horizontal integration in the wider governance framework. In the absence of a coherent national climate policy, Johannesburg, Cape Town, and Durban have developed distinct climate actions within their jurisdictions. In their effort to address climate change, transnational city networks have provided considerable technical support to these cities. Yet, substantial domestic political-economic obstacles hinder the three cities to develop a more ambitious stance on climate change.


2010 ◽  
Vol 114 (1158) ◽  
pp. 459-468 ◽  
Author(s):  
A. Bows

Abstract Each year greenhouse gas emissions remain high the climate mitigation and adaptation challenges grow. The economic downturn was already in train in 2008, yet concentrations of CO2 increased unabated. Without concerted effort across all sectors there will be little chance of avoiding ‘dangerous climate change’ and the aviation sector has a clear role to play. Current and forthcoming technologies, operational practices and behavioural change offer widespread opportunities for other sectors to mitigate their CO2 emissions in absolute terms, but as they do so, aviation will become an increasingly important player. By comparing a range of global cross-sector emission scenarios with existing aviation projections, this paper illustrates the importance of understanding the future context with regard to other sectors when assessing the aviation industry’s potential impact. Given growth projections for aviation and the relatively slow pace of technological change, aviation’s proportion of 2050 global CO2 emissions is low only in those global cross-sector emission scenarios where there is a high probability of ‘dangerous climate change’. For a ‘reasonable’ (>50%) chance of avoiding ‘dangerous climate change’, the most technologically radical scenarios for aviation make up 15% of global CO2 in 2050 and conventional scenarios exceed the carbon budget entirely. Only by recognising that aviation’s currently projected emissions are incompatible with avoiding ‘dangerous climate change’ can the industry fully grasp the challenge of accelerating innovation and managing demand to deliver a more sustainable route to 2050 and beyond.


2018 ◽  
Vol 99 (9) ◽  
pp. 1907-1924 ◽  
Author(s):  
J. Ching ◽  
G. Mills ◽  
B. Bechtel ◽  
L. See ◽  
J. Feddema ◽  
...  

AbstractThe World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


2021 ◽  
Author(s):  
Adrien Michel ◽  
Bettina Schaefli ◽  
Nander Wever ◽  
Harry Zekollari ◽  
Michael Lehning ◽  
...  

Abstract. Rivers are ecosystems highly sensitive to climate change and projected future increase in air temperature is expected to increase the stress for these ecosystems. Rivers are also an important socio-economical factor. In addition to changes in water availability, climate change will impact the temperature of rivers. This study presents a detailed analysis of river temperature and discharge evolution over the 21st century in Switzerland, a country covering a wide range of Alpine and lowland hydrological regimes. In total, 12 catchments are studied. They are situated both in the lowland Swiss Plateau and the Alpine regions and cover overall 10 % of the country’s area. This represents the so far largest study of climate change impacts on river temperature in Switzerland. The impact of climate change is assessed using a chain of physics-based models forced with the most recent climate change scenarios for Switzerland including low, mid, and high emissions pathways. A clear warming of river water is modelled during the 21st century, more pronounced for the high emission scenarios and toward the end of the century. For the period 2030–2040, median warming in river temperature of +1.1 °C for Swiss Plateau catchments and of +0.8 °C for Alpine catchments are expected compared to the reference period 1990–2000 (similar for all emission scenarios). At the end of the century (2080–2090), the median annual river temperature increase ranges between +0.9 °C for low emission and +3.5 °C for high emission scenarios for both Swiss Plateau and Alpine catchments. At the seasonal scale, the warming on the Swiss Plateau and in the Alpine regions exhibits different patterns. For the Swiss Plateau, the spring and fall warming is comparable to the warming in winter, while the summer warming is stronger but still moderate. In Alpine catchments, only a very limited warming is expected in winter. A marked discharge increase in winter and spring is expected in these catchments due to enhanced snowmelt and a larger fraction of liquid precipitation. Accordingly, the period of maximum discharge in Alpine catchments, currently occurring during mid-summer, will shift to earlier in the year by a few weeks (low emission) or almost two months (high emission) by the end of the century. In summer, the marked discharge reduction in Alpine catchments for high emission scenarios leads to an increase in sensitivity of water temperature to low discharge, which is not observed in the Swiss Plateau catchments. In addition, an important soil warming is expected due to glacier and snow cover decrease. These effects combined lead to a summertime river warming of +6.0 °C in Alpine catchments by the end of the century for high emission scenarios. Two metrics are used to show the adverse effects of river temperature increase both on natural and human systems. All results of this study along with the necessary source code are provided with this manuscript.


Author(s):  
Audrey de Nazelle ◽  
Charlotte J. Roscoe ◽  
Aina Roca-Barcelό ◽  
Giselle Sebag ◽  
Gudrun Weinmayr ◽  
...  

Motivated by a growing recognition of the climate emergency, reflected in the 26th Conference of the Parties (COP26), we outline untapped opportunities to improve health through ambitious climate actions in cities. Health is a primary reason for climate action yet is rarely integrated in urban climate plans as a policy goal. This is a missed opportunity to create sustainable alliances across sectors and groups, to engage a broad set of stakeholders, and to develop structural health promotion. In this statement, we first briefly review the literature on health co-benefits of urban climate change strategies and make the case for health-promoting climate action; we then describe barriers to integrating health in climate action. We found that the evidence-base is often insufficiently policy-relevant to be impactful. Research rarely integrates the complexity of real-world systems, including multiple and dynamic impacts of strategies, and consideration of how decision-making processes contend with competing interests and short-term electoral cycles. Due to siloed-thinking and restrictive funding opportunities, research often falls short of the type of evidence that would be most useful for decision-making, and research outputs can be cryptic to decision makers. As a way forward, we urge researchers and stakeholders to engage in co-production and systems thinking approaches. Partnering across sectors and disciplines is urgently needed so pathways to climate change mitigation and adaptation fully embrace their health-promoting potential and engage society towards the huge transformations needed. This commentary is endorsed by the International Society for Environmental Epidemiology (ISEE) and the International Society for Urban Health (ISUH) and accompanies a sister statement oriented towards stakeholders (published on the societies’ websites).


Sign in / Sign up

Export Citation Format

Share Document