scholarly journals A Hyperactive End to the Atlantic Hurricane Season: October–November 2020

Author(s):  
Philip J. Klotzbach ◽  
Kimberly M. Wood ◽  
Michael M. Bell ◽  
Eric S. Blake ◽  
Steven G. Bowen ◽  
...  

AbstractThe active 2020 Atlantic hurricane season produced 30 named storms, 14 hurricanes, and 7 major hurricanes (Category 3+ on the Saffir-Simpson Hurricane Wind Scale). Though the season was active overall, the final two months (October–November) raised 2020 into the upper echelon of Atlantic hurricane activity for integrated metrics such as Accumulated Cyclone Energy (ACE). This study focuses on October–November 2020, when 7 named storms, 6 hurricanes, and 5 major hurricanes formed and produced ACE of 74 * 104 kt2. Since 1950, October–November 2020 ranks tied for 3rd for named storms, 1st for hurricanes and major hurricanes, and 2nd for ACE. Six named storms also underwent rapid intensification (≥30 kt intensification in ≤24 hr) in October–November 2020—the most on record.This manuscript includes a climatological analysis of October–November tropical cyclones (TCs) and their primary formation regions. In 2020, anomalously low wind shear in the western Caribbean and Gulf of Mexico, likely driven by a moderate intensity La Niña event and anomalously high sea surface temperatures (SSTs) in the Caribbean provided dynamic and thermodynamic conditions that were much more conducive than normal for late-season TC formation and rapid intensification. This study also highlights October–November 2020 landfalls, including Hurricanes Delta and Zeta in Louisiana and in Mexico and Hurricanes Eta and Iota in Nicaragua. The active late season in the Caribbean would have been anticipated by a statistical model using the July–September-averaged ENSO Longitude Index and Atlantic warm pool SSTs as predictors.

2015 ◽  
Vol 143 (9) ◽  
pp. 3329-3353 ◽  
Author(s):  
John L. Beven II ◽  
Eric S. Blake

Abstract The 2010 Atlantic hurricane season was marked by above-average tropical cyclone activity with the formation of 19 tropical storms. A total of 12 of the storms became hurricanes and 5 became major hurricanes (category 3 or higher on the Saffir–Simpson hurricane wind scale). In addition, there were two tropical depressions that did not reach storm strength. These totals were well above the long-term averages of 11 named storms, 6 hurricanes, and 2 major hurricanes. The areas most affected by the 2010 storms were eastern Mexico, Central America, and the island nations of the western Caribbean Sea, where multiple strikes occurred. In addition, two hurricanes struck eastern Canada. Despite the high level of activity, no hurricanes made landfall in the United States in 2010. The death toll from the 2010 Atlantic tropical cyclones was 189. A verification of National Hurricane Center official forecasts during 2010 is also presented. The 2010 mean track errors were slightly larger than the previous 5-yr average at 12 and 24 h and much smaller at the other forecast times, even though the 2010 track forecasts were more difficult than normal. The 2010 mean intensity forecast errors were larger than the previous 5-yr average at 12–48 h, smaller at the longer forecast times, and had a high bias at all forecast times. As with the track forecasts, the 2010 intensity forecasts were more difficult than normal at all forecast times.


2005 ◽  
Vol 5 (3) ◽  
pp. 185-188
Author(s):  
hazel hewison

hazel hewison, biall chair, reports on her experiences at the carall conference workshop on disaster planning, following the disastrous 2004 atlantic hurricane season and the devastating asian tsunami tragedy in december 2004.


2020 ◽  
Author(s):  
Karthik Balaguru ◽  
Gregory Foltz ◽  
Ruby Leung ◽  
John Kaplan ◽  
Wenwei Xu ◽  
...  

<p>Rapid Intensification (RI) of hurricanes is difficult to predict and poses a formidable threat to coastal populations. While a warm upper-ocean is well-known to favor RI, the role of salinity is less clear. In this study, using a suite of observations, we demonstrate that the subsurface oceans' influence on Atlantic hurricane RI exhibits two regimes. In the western region, which includes the Gulf of Mexico and the western Caribbean Sea, temperature stratification plays an important role in hurricane RI with little impact from salinity. On the other hand, in the eastern region dominated by the Amazon-Orinoco plume, salinity stratification prominently impacts RI. While a weak temperature stratification aids cold wake reduction for hurricanes in the western region, a strong salinity stratification causes less hurricane-induced mixing and surface cooling in the eastern region. Finally, in both regions, the relevance of the cold wake, and consequently the ocean sub-surface, is enhanced during RI compared to weaker intensification.</p>


2017 ◽  
Vol 44 (10) ◽  
pp. 5071-5077 ◽  
Author(s):  
Jennifer M. Collins ◽  
David R. Roache

1974 ◽  
Vol 102 (4) ◽  
pp. 280-289 ◽  
Author(s):  
Paul J. Hebert ◽  
Neil L. Frank

2009 ◽  
Vol 137 (12) ◽  
pp. 4061-4088 ◽  
Author(s):  
Michael J. Brennan ◽  
Richard D. Knabb ◽  
Michelle Mainelli ◽  
Todd B. Kimberlain

Abstract The 2007 Atlantic hurricane season had 15 named storms, including 14 tropical storms and 1 subtropical storm. Of these, six became hurricanes, including two major hurricanes, Dean and Felix, which reached category 5 intensity (on the Saffir–Simpson hurricane scale). In addition, there were two unnamed tropical depressions. While the number of hurricanes in the basin was near the long-term mean, 2007 became the first year on record with two category 5 landfalls, with Hurricanes Dean and Felix inflicting severe damage on Mexico and Nicaragua, respectively. Dean was the first category 5 hurricane in the Atlantic basin to make landfall in 15 yr, since Hurricane Andrew (1992). In total, eight systems made landfall in the basin during 2007, and the season’s tropical cyclones caused approximately 380 deaths. In the United States, one hurricane, one tropical storm, and three tropical depressions made landfall, resulting in 10 fatalities and about $50 million in damage.


Author(s):  
Jörn Geister

The windward reef complex NE and E of San Andrés Island is briefly described in terms of submarine topography, sediments and the distribution of corals and other benthonic organisms. The breaker zone of the San Andrés barrier and other exposed Western Caribbean reefs characteristically exhibits a profuse growth consisting almost exclusively of Millepora. In this respect they are different from most other described West Indian reef localities, where Acropora palmata is the dominating species in this part of the reef. The replacement of Acropora palmata by Millepora is interpreted as an adaptation of the reef crest community to high energy environments due to long swell prevailing at the Western end of the Caribbean Sea. A few short reef sections exposed to the maximum degree of wave energy show conspicuous algal ridges.


Sign in / Sign up

Export Citation Format

Share Document