scholarly journals Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality

2014 ◽  
Vol 53 (4) ◽  
pp. 840-858 ◽  
Author(s):  
Angela M. Rendón ◽  
Juan F. Salazar ◽  
Carlos A. Palacio ◽  
Volkmar Wirth ◽  
Björn Brötz

AbstractMany cities located in valleys with limited ventilation experience serious air pollution problems. The ventilation of an urban valley can be limited not only by orographic barriers, but also by urban heat island–induced circulations and/or the capping effect of temperature inversions. Furthermore, land-use/-cover changes caused by urbanization alter the dynamics of temperature inversions and urban heat islands, thereby affecting air quality in an urban valley. By means of idealized numerical simulations, it is shown that in a mountain valley subject to temperature inversions urbanization can have an important influence on air quality through effects on the inversion breakup. Depending on the urban area fraction in the simulations, the breakup time changes, the cross-valley wind system can evolve from a confined to an open system during the daytime, the slope winds can be reversed by the interplay between the urban heat island and the temperature inversion, and the breakup pattern can migrate from one dominated by the growth of the convective boundary layer to one also involving the removal of mass from the valley floor by the upslope winds. The analysis suggests that the influence of urbanization on the air quality of an urban valley may lead to contrasting and possibly counterintuitive effects when considering temperature inversions. More urban land does not necessarily imply worse air quality, even when considering that the amount of pollutants emitted grows with increased urbanization.

2021 ◽  
pp. 117802
Author(s):  
Ahmed M. El Kenawy ◽  
Juan I. Lopez-Moreno ◽  
Matthew F. McCabe ◽  
Fernando Domínguez-Castro ◽  
Dhais Peña-Angulo ◽  
...  

Urban Climate ◽  
2020 ◽  
Vol 31 ◽  
pp. 100542 ◽  
Author(s):  
Juan J. Henao ◽  
Angela M. Rendón ◽  
Juan F. Salazar

2016 ◽  
Vol 125 ◽  
pp. 199-211 ◽  
Author(s):  
Joachim Fallmann ◽  
Renate Forkel ◽  
Stefan Emeis

1981 ◽  
Vol 20 (11) ◽  
pp. 1295-1300 ◽  
Author(s):  
Julie A. Winkler ◽  
Richard H. Skaggs ◽  
Donald G. Baker

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Margaret Hurwitz ◽  
Christian Braneon ◽  
Dalia Kirschbaum ◽  
Felipe Mandarino ◽  
Raed Mansour

Rio de Janeiro, Brazil, and Chicago, Ill., are using NASA Earth observations to map, monitor, and forecast water and air quality, urban heat island effects, landslide risks, and more.


2020 ◽  
Vol 20 (5) ◽  
pp. 2755-2780 ◽  
Author(s):  
Michael Biggart ◽  
Jenny Stocker ◽  
Ruth M. Doherty ◽  
Oliver Wild ◽  
Michael Hollaway ◽  
...  

Abstract. We examine the street-scale variation of NOx, NO2, O3 and PM2.5 concentrations in Beijing during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) winter measurement campaign in November–December 2016. Simulations are performed using the urban air pollution dispersion and chemistry model ADMS-Urban and an explicit network of road source emissions. Two versions of the gridded Multi-resolution Emission Inventory for China (MEIC v1.3) are used: the standard MEIC v1.3 emissions and an optimised version, both at 3 km resolution. We construct a new traffic emissions inventory by apportioning the transport sector onto a detailed spatial road map. Agreement between mean simulated and measured pollutant concentrations from Beijing's air quality monitoring network and the Institute of Atmospheric Physics (IAP) field site is improved when using the optimised emissions inventory. The inclusion of fast NOx–O3 chemistry and explicit traffic emissions enables the sharp concentration gradients adjacent to major roads to be resolved with the model. However, NO2 concentrations are overestimated close to roads, likely due to the assumption of uniform traffic activity across the study domain. Differences between measured and simulated diurnal NO2 cycles suggest that an additional evening NOx emission source, likely related to heavy-duty diesel trucks, is not fully accounted for in the emissions inventory. Overestimates in simulated early evening NO2 are reduced by delaying the formation of stable boundary layer conditions in the model to replicate Beijing's urban heat island. The simulated campaign period mean PM2.5 concentration range across the monitoring network (∼15 µg m−3) is much lower than the measured range (∼40 µg m−3). This is likely a consequence of insufficient PM2.5 emissions and spatial variability, neglect of explicit point sources, and assumption of a homogeneous background PM2.5 level. Sensitivity studies highlight that the use of explicit road source emissions, modified diurnal emission profiles, and inclusion of urban heat island effects permit closer agreement between simulated and measured NO2 concentrations. This work lays the foundations for future studies of human exposure to ambient air pollution across complex urban areas, with the APHH-China campaign measurements providing a valuable means of evaluating the impact of key processes on street-scale air quality.


2015 ◽  
Vol 54 (2) ◽  
pp. 302-321 ◽  
Author(s):  
Angela M. Rendón ◽  
Juan F. Salazar ◽  
Carlos A. Palacio ◽  
Volkmar Wirth

AbstractUrban valleys can experience serious air pollution problems as a combined result of their limited ventilation and the high emission of pollutants from the urban areas. Idealized simulations were analyzed to elucidate the breakup of an inversion layer in urban valleys subject to a strong low-level temperature inversion and topographic effects on surface heating such as topographic shading, as well as the associated air pollution transport mechanisms. The results indicate that the presence and evolution in time of the inversion layer and its interplay with an urban heat island within the valley strongly influence the venting of pollutants out of urban valleys. Three mechanisms of air pollution transport were identified. These are transport by upslope winds, transport by an urban heat island–induced circulation, and transport within a closed slope-flow circulation below an inversion layer.


Urban Climate ◽  
2014 ◽  
Vol 10 ◽  
pp. 745-757 ◽  
Author(s):  
T. Plocoste ◽  
S. Jacoby-Koaly ◽  
J. Molinié ◽  
R.H. Petit

Sign in / Sign up

Export Citation Format

Share Document