scholarly journals Frequency Analysis of Nonidentically Distributed Hydrometeorological Extremes Associated with Large-Scale Climate Variability Applied to South Korea

2014 ◽  
Vol 53 (5) ◽  
pp. 1193-1212 ◽  
Author(s):  
Taesam Lee ◽  
Changsam Jeong

AbstractIn the frequency analyses of extreme hydrometeorological events, the restriction of statistical independence and identical distribution (iid) from year to year ensures that all observations are from the same population. In recent decades, the iid assumption for extreme events has been shown to be invalid in many cases because long-term climate variability resulting from phenomena such as the Pacific decadal variability and El Niño–Southern Oscillation may induce varying meteorological systems such as persistent wet years and dry years. Therefore, the objective of the current study is to propose a new parameter estimation method for probability distribution models to more accurately predict the magnitude of future extreme events when the iid assumption of probability distributions for large-scale climate variability is not adequate. The proposed parameter estimation is based on a metaheuristic approach and is derived from the objective function of the rth power probability-weighted sum of observations in increasing order. The combination of two distributions, gamma and generalized extreme value (GEV), was fitted to the GEV distribution in a simulation study. In addition, a case study examining the annual hourly maximum precipitation of all stations in South Korea was performed to evaluate the performance of the proposed approach. The results of the simulation study and case study indicate that the proposed metaheuristic parameter estimation method is an effective alternative for accurately selecting the rth power when the iid assumption of extreme hydrometeorological events is not valid for large-scale climate variability. The maximum likelihood estimate is more accurate with a low mixing probability, and the probability-weighted moment method is a moderately effective option.

2021 ◽  
pp. 1-50
Author(s):  
Benjamin Pohl ◽  
Andrew Lorrey ◽  
Andrew Sturman ◽  
Hervé Quénol ◽  
James Renwick ◽  
...  

AbstractThis paper introduces a set of descriptors applied to weather regimes, that allow for a detailed monitoring of the location and intensity of their atmospheric centers of action (e.g. troughs and ridges) and the gradients between them, when applicable. Descriptors are designed to document the effect of climate variability and change in modulating the character of daily weather regimes, rather than merely their occurrence statistics.As a case study, the methodology is applied to Aotearoa New Zealand (ANZ), using ERA5 ensemble reanalysis data for the period 1979-2019. Here, we analyze teleconnections between the regimes and their descriptors, and large-scale climate variability. Results show a significant modulation of centers of action by the phase of the Southern Annular Mode, with a strong relationship identified with the latitude of atmospheric ridges. Significant associations with El Niño Southern Oscillation are also identified. Modes of large-scale variability have a stronger influence on the regimes’ intrinsic features than their occurrence. This demonstrates the usefulness of such descriptors, which help understand the relationship between mid-latitude transient perturbations and large-scale modes of climate variability.In future research, this methodological framework will be applied to analyze (i) low-frequency changes in weather regimes under climate change, in line with the southward shift of storm tracks, and (ii) regional-scale effects on the climate of ANZ, resulting from interaction with its topography.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-wei Yang ◽  
Man-feng Dou ◽  
Zhi-yong Dai

Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC) fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1) Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2) Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.


Sign in / Sign up

Export Citation Format

Share Document