A simple method for surface radiation estimating using FY-4A data

Author(s):  
Lijuan Wang ◽  
Hongchao Zuo ◽  
Wei Wang

AbstractFY-4A is a geostationary meteorological satellite with four advanced payloads, which can be used to quantitatively detect the earth's atmospheric system with multi spectral and high spatial-temporal resolution. However, the applicable model limits the application of the FY-4A satellite data. In this paper, the empirical statistical model developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is extended for FY-4A Advanced Geosynchronous Radiation Imager (AGRI), and it is applied to observed data to evaluate the applicability of the model for AGRI measurements. To improve the accuracy of radiation estimation, the artificial intelligent particle swarm optimization (PSO) algorithm was used for model optimizing. Results show that the estimated radiation has diurnal variation, which accords with the characteristics of radiation variation. The estimated net surface shortwave radiation (Sn) and observed values show good correlation. However, large deviations from observations are found in the estimated values when the empirical model based on MODIS is directly used to process AGRI data. Thus, the empirical statistical model based on MODIS can be applied to AGRI data, but the empirical parameters need to be revised. Optimization of the empirical statistical model by the PSO algorithm can effectively improve the accuracy of radiation estimate. The Mean absolute percentage error (MAPE) of Sn estimated by optimized models is reduced to 15%. The MAPE of the net surface long-wave radiation (Ln) estimated by optimized models is reduced to 31%, and the MAPE of the net radiation (Rn) estimated by optimized models is reduced to 27%. However, for the uncertainty caused by error accumulation effect, the influence of PSO optimization on Rn is not as obvious as that of Ln. However, from the analysis of error distribution, it shows that PSO optimization does improve the estimation results of Rn. Based on AGRI data, the surface radiation can be estimated simply, and the regional or larger scale surface radiation retrieval can quickly realize by this method which has large application potential and popularization value.

Author(s):  
Chen Chen ◽  
Bingjie Li ◽  
Wei Zhang ◽  
Hongda Zhao ◽  
Ciwei Gao ◽  
...  

Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 78-104
Author(s):  
Vasili B. V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

Every day, new data must be analysed as well as possible in all areas of applied science, which requires the development of attractive statistical models, that is to say adapted to the context, easy to use and efficient. In this article, we innovate in this direction by proposing a new statistical model based on the functionalities of the sinusoidal transformation and power Lomax distribution. We thus introduce a new three-parameter survival distribution called sine power Lomax distribution. In a first approach, we present it theoretically and provide some of its significant properties. Then the practicality, utility and flexibility of the sine power Lomax model are demonstrated through a comprehensive simulation study, and the analysis of nine real datasets mainly from medicine and engineering. Based on relevant goodness of fit criteria, it is shown that the sine power Lomax model has a better fit to some of the existing Lomax-like distributions.


2020 ◽  
Vol 12 (10) ◽  
pp. 1641
Author(s):  
Yunfei Zhang ◽  
Yunhao Chen ◽  
Jing Li ◽  
Xi Chen

Land-surface temperature (LST) plays a key role in the physical processes of surface energy and water balance from local through global scales. The widely used one kilometre resolution daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product has missing values due to the influence of clouds. Therefore, a large number of clear-sky LST reconstruction methods have been developed to obtain spatially continuous LST datasets. However, the clear-sky LST is a theoretical value that is often an overestimate of the real value. In fact, the real LST (also known as cloudy-sky LST) is more necessary and more widely used. The existing cloudy-sky LST algorithms are usually somewhat complicated, and the accuracy needs to be improved. It is necessary to convert the clear-sky LST obtained by the currently better-developed methods into cloudy-sky LST. We took the clear-sky LST, cloud-cover duration, downward shortwave radiation, albedo and normalized difference vegetation index (NDVI) as five independent variables and the real LST at the ground stations as the dependent variable to perform multiple linear regression. The mean absolute error (MAE) of the cloudy-sky LST retrieved by this method ranged from 3.5–3.9 K. We further analyzed different cases of the method, and the results suggested that this method has good flexibility. When we chose fewer independent variables, different clear-sky algorithms, or different regression tools, we also achieved good results. In addition, the method calculation process was relatively simple and can be applied to other research areas. This study preliminarily explored the influencing factors of the real LST and can provide a possible option for researchers who want to obtain cloudy-sky LST through clear-sky LST, that is, a convenient conversion method. This article lays the foundation for subsequent research in various fields that require real LST.


2014 ◽  
Vol 42 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Hiroshi Shinmoto ◽  
Koichi Oshio ◽  
Chiharu Tamura ◽  
Shigeyoshi Soga ◽  
Teppei Okamura ◽  
...  

2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


Sign in / Sign up

Export Citation Format

Share Document