scholarly journals An Evaluation of Surface Atmospheric Changes over the Arctic Ocean for 2000–09 Using Recent Reanalyses

2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.

2015 ◽  
Vol 143 (6) ◽  
pp. 2363-2385 ◽  
Author(s):  
Keith M. Hines ◽  
David H. Bromwich ◽  
Lesheng Bai ◽  
Cecilia M. Bitz ◽  
Jordan G. Powers ◽  
...  

Abstract The Polar Weather Research and Forecasting Model (Polar WRF), a polar-optimized version of the WRF Model, is developed and made available to the community by Ohio State University’s Polar Meteorology Group (PMG) as a code supplement to the WRF release from the National Center for Atmospheric Research (NCAR). While annual NCAR official releases contain polar modifications, the PMG provides very recent updates to users. PMG supplement versions up to WRF version 3.4 include modified Noah land surface model sea ice representation, allowing the specification of variable sea ice thickness and snow depth over sea ice rather than the default 3-m thickness and 0.05-m snow depth. Starting with WRF V3.5, these options are implemented by NCAR into the standard WRF release. Gridded distributions of Arctic ice thickness and snow depth over sea ice have recently become available. Their impacts are tested with PMG’s WRF V3.5-based Polar WRF in two case studies. First, 20-km-resolution model results for January 1998 are compared with observations during the Surface Heat Budget of the Arctic Ocean project. Polar WRF using analyzed thickness and snow depth fields appears to simulate January 1998 slightly better than WRF without polar settings selected. Sensitivity tests show that the simulated impacts of realistic variability in sea ice thickness and snow depth on near-surface temperature is several degrees. The 40-km resolution simulations of a second case study covering Europe and the Arctic Ocean demonstrate remote impacts of Arctic sea ice thickness on midlatitude synoptic meteorology that develop within 2 weeks during a winter 2012 blocking event.


2013 ◽  
Vol 110 ◽  
pp. 107-125 ◽  
Author(s):  
Victoria J. Hill ◽  
Patricia A. Matrai ◽  
Elise Olson ◽  
S. Suttles ◽  
Mike Steele ◽  
...  

2010 ◽  
Vol 10 (8) ◽  
pp. 18807-18878 ◽  
Author(s):  
S. J. Doherty ◽  
S. G. Warren ◽  
T. C. Grenfell ◽  
A. D. Clarke ◽  
R. E. Brandt

Abstract. Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual samples of falling snow were collected on Svalbard, documenting the springtime decline of BC from March through May. Absorption Ångstrom exponents are 1.5–1.7 in Norway, Svalbard, and Western Russia, 2.1–2.3 elsewhere in the Arctic, and 2.5 in Greenland. Correspondingly, the estimated contribution to absorption by non-BC constituents in these regions is ~25%, 40%, and 50%, respectively. It has been hypothesized that when the snow surface layer melts some of the BC is left at the top of the snowpack rather than being carried away in meltwater. This process was observed in a few locations and would cause a positive feedback on snowmelt. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air at Alert (Canada), Barrow (Alaska), and Ny-Ålesund (Svalbard). Correspondingly, the new BC concentrations for Arctic snow are somewhat lower than those reported by Clarke and Noone for 1983–1984, but because of methodological differences it is not clear that the differences are significant.


2013 ◽  
Vol 10 (1) ◽  
pp. 1345-1399 ◽  
Author(s):  
M. Ardyna ◽  
M. Babin ◽  
M. Gosselin ◽  
E. Devred ◽  
S. Bélanger ◽  
...  

Abstract. Predicting water-column phytoplankton biomass from near-surface measurements is a common approach in biological oceanography, particularly since the advent of satellite remote sensing of ocean color (OC). In the Arctic Ocean, deep subsurface chlorophyll maxima (SCMs) that significantly contribute to primary production (PP) are often observed. These are neither detected by ocean color sensors nor accounted for the primary production models applied to the Arctic Ocean. Here, we assemble a large database of pan-Arctic observations (i.e. 5206 stations) and develop an empirical model to estimate vertical chlorophyll a (chl a) according to: (1) the shelf-offshore gradient delimited by the 50 m isobath, (2) seasonal variability along pre-bloom, post-bloom and winter periods, and (3) regional differences across ten sub-Arctic and Arctic seas. Our detailed analysis of the dataset shows that, for the pre-bloom and winter periods, as well as for high surface chl a concentration (chl asurf; 0.7–30 mg m−3) throughout the open water period, the chl a maximum is mainly located at or near the surface. Deep SCMs occur chiefly during the post-bloom period when chl asurf is low (0–0.5 mg m−3). By applying our empirical model to annual chl asurf time series, instead of the conventional method assuming vertically homogenous chl a, we produce novel pan-Arctic PP estimates and associated uncertainties. Our results show that vertical variations in chl a have a limited impact on annual depth-integrated PP. Small overestimates found when SCMs are shallow (i.e. pre-bloom, post-bloom > 0.05 mg m−3 and the winter period) somehow compensate for the underestimates found when SCMs are deep (i.e. post-bloom < 0.05 mg m−3). SCMs are, however, important seasonal features with a substantial impact on depth-integrated PP estimates, especially when surface nitrate is exhausted in the Arctic Ocean and where highly stratified and oligotrophic conditions prevail.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 447-460 ◽  
Author(s):  
P. Bourgain ◽  
J. C. Gascard ◽  
J. Shi ◽  
J. Zhao

Abstract. Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007–2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the near-surface temperature maximum due to incoming solar radiation, and (3) the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N) in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW) was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely due to a strong recirculation within the Beaufort Gyre. In contrast, south of 75° N, the cooling and warming of the summer and winter PaW, respectively, suggest that either the PaW was less present in 2010 than in 2008 in this region, and/or the PaW was older in 2010 than in 2008. In addition, in the vicinity of the Chukchi Sea, both summer and winter PaW were significantly warmer in 2010 than in 2008, as a consequence of a general warming trend of the PaW entering in the deep Arctic Ocean as of 2008.


2016 ◽  
Vol 121 (8) ◽  
pp. 6137-6158 ◽  
Author(s):  
Zhixuan Feng ◽  
Rubao Ji ◽  
Robert G. Campbell ◽  
Carin J. Ashjian ◽  
Jinlun Zhang

2020 ◽  
Author(s):  
Jutta Vüllers ◽  
Peggy Achtert ◽  
Ian M. Brooks ◽  
Michael Tjernström ◽  
John Prytherch ◽  
...  

Abstract. The Arctic Ocean 2018 (AO2018) expedition took place in the central Arctic Ocean in August and September 2018. An extensive suite of instrumentation provided detailed measurements of surface water chemistry and biology, sea ice and ocean physical and biogeochemical properties, surface exchange processes, aerosols, clouds, and the state of the atmosphere. The measurements provide important information on the coupling of the ocean and ice surface to the atmosphere and in particular to clouds. This paper provides: (i) an overview of the synoptic-scale atmospheric conditions and its climatological anomaly to help interpret the process studies and put the detailed observations from AO2018 into a larger context, both spatially and temporally; (ii) a statistical analysis of the thermodynamic and near-surface meteorological conditions, boundary layer, cloud, and fog characteristics; (iii) a comparison of the results to observations from earlier Arctic Ocean expeditions, in particular AOE96, SHEBA, AOE2001, ASCOS, ACSE, and AO2016, to provide an assessment of the representativeness of the measurements. The results show that near-surface conditions were broadly comparable to earlier experiments, however the thermodynamic vertical structure was quite different. An unusually high frequency of well-mixed boundary layers up to about 1 km depth occurred, and only a few cases of the prototypical Arctic summer single-layer stratocumulus deck were observed. Instead, an unexpectedly high amount of multiple cloud layers and mid-level clouds was present throughout the campaign. These differences from previous studies are related to the high frequency of cyclonic activity in the central Arctic in 2018.


2018 ◽  
Vol 64 (1) ◽  
pp. 42-54 ◽  
Author(s):  
P. V. Aksenov ◽  
V. V. Ivanov

The paper presents arguments in favor of an explanation of the reduction of the ice-covered area in the Nansen basin of the Arctic Ocean (AO) in winter by the so-called “atlantification “ — the strengthening of the influence of waters of Atlantic origin on the hydrological regime of the Arctic Ocean. We hypothesize that the main agent of “atlantification” in theWesternNansenBasinis winter thermal convection, which delivers heat from the deep to the upper mixed layer, thus melting sea ice and warming the near-surface air. To check up this hypothesis we used ocean reanalysis MERCATOR data for time interval 2007–2017. The quantitative criterion of thermal convection, based on the type of vertical thermohaline structure in the upper ocean layer, was applied to access the change of convection depth between climatic values in 1950–1990 and the present time. The main conclusion of the paper can be summarized as the following. Due to a gradual reduction of sea ice in the 1990s, the vertical stratification of waters in theWesternNansenBasinhas changed. As a result, the potential for penetration of vertical thermal convection into the warm and saline Atlantic layer and the consumption of heat and salt content of this layer for warming and salinification of the overlying waters increased, thus leading to additional loss of sea ice in winter.


2021 ◽  
Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Sylvie Charbit ◽  
Pascale Braconnot ◽  
Jean-Baptiste Madeleine

Abstract. The Last Interglacial period (129–116 ka BP) is characterized by a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the pre-industrial period. In particular, these changes amplify the seasonality of the insolation in the high latitudes of the northern hemisphere. Here, we investigate the Arctic climate response to this forcing by comparing the CMIP6 lig127k and pi-Control simulations performed with the IPSL-CM6A-LR model. Using an energy budget framework, we analyse the interactions between the atmosphere, ocean, sea ice and continents. In summer, the insolation anomaly reaches its maximum and causes a near-surface air temperature rise of 3.2 °C over the Arctic region. This warming is primarily due to a strong positive surface downwelling shortwave radiation anomaly over continental surfaces, followed by large heat transfers from the continents back to the atmosphere. The surface layers of the Arctic Ocean also receives more energy, but in smaller quantity than the continents due to a cloud negative feedback. Furthermore, while heat exchanges from the continental surfaces towards the atmosphere are strengthened, the ocean absorbs and stores the heat excess due to a decline in sea ice cover. However, the maximum near-surface air temperature anomaly does not peak in summer like insolation, but occurs in autumn with a temperature increase of 4.0 °C relative to the pre-industrial period. This strong warming is driven by a positive anomaly of longwave radiations over the Arctic ocean enhanced by a positive cloud feedback. It is also favoured by the summer and autumn Arctic sea ice retreat (−1.9 × 106 and −3.4 × 106 km2 respectively), which exposes the warm oceanic surface and allows heat stored by the ocean in summer and water vapour to be released. This study highlights the crucial role of the sea ice cover variations, the Arctic ocean, as well as changes in polar clouds optical properties on the Last Interglacial Arctic warming.


Sign in / Sign up

Export Citation Format

Share Document