scholarly journals Scalar Turbulence in Convective Boundary Layers by Changing the Entrainment Flux

2013 ◽  
Vol 70 (1) ◽  
pp. 248-265 ◽  
Author(s):  
Alessandra S. Lanotte ◽  
Irene M. Mazzitelli

Abstract A large-eddy simulation model is adopted to investigate the evolution of scalars transported by atmospheric cloud-free convective boundary layer flows. Temperature fluctuations due to the ground release of sensible heat and concentration fluctuations of a trace gas emitted at the homogeneous surface are mixed by turbulence within the unstable boundary layer. On the top, the entrainment zone is varied to obtain two distinct situations: (i) the temperature inversion is strong and the trace gas increment across the entrainment region is small, yielding to a small top flux with respect to the surface emission; (ii) the temperature inversion at the top of the convective boundary layer is weak, and the scalar increment large enough to achieve a concentration flux toward the free atmosphere that overwhelms the surface flux. In both cases, an estimation of the entrainment flux is obtained within a simple model, and it is tested against numerical data. The evolution of the scalar profiles is discussed in terms of the different entrainment–surface flux ratios. Results show that, when entrainment at the top of the boundary layer is weak, temperature and trace gas scalar fields are strongly correlated, particularly in the lower part of the boundary layer. This means that they exhibit similar behavior from the largest down to the smallest spatial scales. However, when entrainment is strong, as moving from the surface, differences in the transport of the two scalars arise. Finally, it is shown that, independently of the scalar regime, the temperature field exhibits more intermittent fluctuations than the trace gas.

2005 ◽  
Vol 62 (7) ◽  
pp. 2078-2097 ◽  
Author(s):  
Edward G. Patton ◽  
Peter P. Sullivan ◽  
Chin-Hoh Moeng

Abstract This manuscript describes numerical experiments investigating the influence of 2–30-km striplike heterogeneity on wet and dry convective boundary layers coupled to the land surface. The striplike heterogeneity is shown to dramatically alter the structure of the convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The impact, strength, and extent of the organized motions depend critically on the scale of the heterogeneity λ relative to the boundary layer height zi. The coupling with the land surface modifies the surface fluxes and hence the circulations resulting in some differences compared to previous studies using fixed surface forcing. Because of the coupling, surface fluxes in the middle of the patches are small compared to the patch edges. At large heterogeneity scales (λ/zi ∼18) horizontal surface-flux gradients within each patch are strong enough to counter the surface-flux gradients between wet and dry patches allowing the formation of small cells within the patch coexisting with the large-scale patch-induced circulations. The strongest patch-induced motions occur in cases with 4 < λ/zi < 9 because of strong horizontal pressure gradients across the wet and dry patches. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between λ/zi = 4 and 9; however, entrainment rates for all cases are largely unaffected by the striplike heterogeneity. Velocity and scalar fields respond differently to variations of heterogeneity scale. The patch-induced motions have little influence on total vertical scalar flux, but the relative contribution to the flux from organized motions compared to background turbulence varies with heterogeneity scale. Patch-induced motions are shown to dramatically impact point measurements in a free-convective boundary layer. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.


2012 ◽  
Vol 12 (19) ◽  
pp. 9335-9353 ◽  
Author(s):  
H. G. Ouwersloot ◽  
J. Vilà-Guerau de Arellano ◽  
A. C. Nölscher ◽  
M. C. Krol ◽  
L. N. Ganzeveld ◽  
...  

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.


2019 ◽  
Vol 76 (5) ◽  
pp. 1437-1456 ◽  
Author(s):  
Bowen Zhou ◽  
Shiwei Sun ◽  
Jianning Sun ◽  
Kefeng Zhu

Abstract The vertical turbulent velocity variance normalized by the convective velocity squared as a function of the boundary layer depth–normalized height [i.e., ] in the convective boundary layer (CBL) over a homogeneous surface exhibits a near-universal profile, as demonstrated by field observations, laboratory experiments, and numerical simulations. The profile holds over a wide CBL stability range set by the friction velocity, CBL depth, and surface heating. In contrast, the normalized horizontal turbulent velocity variance increases monotonically with decreasing stability. This study investigates the independence of the profile to changes in CBL stability, or more precisely, wind shear. Large-eddy simulations of several convective and neutral cases are performed by varying surface heating and geostrophic winds. Analysis of the turbulent kinetic energy budgets reveals that the conversion term between and depends almost entirely on buoyancy. This explains why does not vary with shear, which is a source to only. Further analysis through rotational and divergent decomposition suggests that the near-universal profile of is fundamentally related to the dynamics and interactions of local and nonlocal CBL turbulence. Specifically, the preferential interactions between local wavenumbers and the downscale energy cascade of CBL turbulence offer plausible explanations to the universal profile of .


Sign in / Sign up

Export Citation Format

Share Document