scholarly journals Standing and Transient Eddies in the Response of the Southern Ocean Meridional Overturning to the Southern Annular Mode

2012 ◽  
Vol 25 (20) ◽  
pp. 6958-6974 ◽  
Author(s):  
C. O. Dufour ◽  
J. Le Sommer ◽  
J. D. Zika ◽  
M. Gehlen ◽  
J. C. Orr ◽  
...  

Abstract To refine the understanding of how the Southern Ocean responds to recent intensification of the southern annular mode (SAM), a regional ocean model at two eddy-permitting resolutions was forced with two synthetic interannual forcings. The first forcing corresponds to homogeneously intensified winds, while the second concerns their poleward intensification, consistent with positive phases of the SAM. Resulting wind-driven responses differ greatly between the nearly insensitive Antarctic Circumpolar Current (ACC) and the more sensitive meridional overturning circulation (MOC). As expected, eddies mitigate the response of the ACC and MOC to poleward-intensified winds. However, transient eddies do not necessarily play an increasing role in meridional transport with increasing resolution. As winds and resolution increase, meridional transport from standing eddies becomes more efficient at balancing wind-enhanced overturning. These results question the current paradigms on the role of eddies and present new challenges for eddy flux parameterization. Results also indicate that spatial patterns of wind anomalies are at least as important as the overall change in intensity in influencing the Southern Ocean’s dynamic response to wind events. Poleward-intensified wind anomalies from the positive trend in the SAM are far more efficient in accelerating the ACC than homogeneous wind anomalies.

2013 ◽  
Vol 26 (20) ◽  
pp. 8017-8036 ◽  
Author(s):  
Peter T. Spooner ◽  
Helen L. Johnson ◽  
Tim J. Woollings

Abstract Coupled climate models predict density-driven weakening of the Atlantic meridional overturning circulation (AMOC) under greenhouse gas forcing, with considerable spread in the response between models. There is also a large spread in the predicted increase of the southern annular mode (SAM) index across these models. Regression analysis across model space using 11 non-eddy-resolving models suggests that up to 35% of the intermodel spread in the AMOC response may be associated with uncertainty in the magnitude of the increase in the SAM. Models with a large, positive SAM index response generally display a smaller weakening of the AMOC under greenhouse gas forcing. The initial AMOC strength is also a major cause of intermodel spread in its response to climate change. The increase in the SAM acts to reduce the weakening of the AMOC over the next century by around ⅓, through increases in wind stress over the Southern Ocean, northward Ekman transport, and upwelling around Antarctica. The SAM response is also related to an increase in the northward salt flux across 30°S and to salinity anomalies in the high-latitude North Atlantic. These provide a positive feedback by further reinforcement of the AMOC. The results suggest that, compared with the real ocean where eddies oppose wind-driven changes in Southern Ocean circulation, climate models underestimate the effects of anthropogenic climate change on the AMOC.


2012 ◽  
Vol 42 (9) ◽  
pp. 1486-1508 ◽  
Author(s):  
Jan Viebahn ◽  
Carsten Eden

Abstract The role of standing eddies for the meridional overturning circulation (MOC) is discussed. The time-mean isopycnal meridional streamfunction is decomposed into a time- and zonal-mean part, a standing-eddy part, and a transient-eddy part. It turns out that the construction of an isopycnal MOC with an exactly vanishing standing-eddy part has to be performed by zonal integration along depth-dependent horizontal isolines of time-mean density. In contrast, zonal integration along time-mean geostrophic streamlines generally only leads to an isopycnal MOC with a reduced standing-eddy part. A generalized approach of constructing meridional transport streamfunctions by two tracer fields and the generalized way to neutralize the corresponding standing-eddy part is given to summarize the discussion. Using the results of an idealized Southern Ocean model, it is demonstrated that neglecting the depth dependence of the zonal integration paths by integrating along density contours or geostrophic streamlines of a fixed depth (“contour depth”) may represent an acceptable approximation: although the standing-eddy part then exactly vanishes only at the contour depth (except for the ageostrophic surface layer using geostrophic streamlines), the overall standing-eddy part is significantly reduced for adequate contour depths. In the idealized Southern Ocean model, density contours at middepth and surface geostrophic streamlines represent the most adequate approximations. Moreover, it is found that the effect of changing the zonal integration paths from latitude circles to curvilinear paths on the zonally averaged density is of the same order as changing from Eulerian to isopycnal averaging.


2010 ◽  
Vol 40 (7) ◽  
pp. 1659-1668 ◽  
Author(s):  
A. M. Treguier ◽  
J. Le Sommer ◽  
J. M. Molines ◽  
B. de Cuevas

Abstract The authors evaluate the response of the Southern Ocean to the variability and multidecadal trend of the southern annular mode (SAM) from 1972 to 2001 in a global eddy-permitting model of the DRAKKAR project. The transport of the Antarctic Circumpolar Current (ACC) is correlated with the SAM at interannual time scales but exhibits a drift because of the thermodynamic adjustment of the model (the ACC transport decreases because of a low renewal rate of dense waters around Antarctica). The interannual variability of the eddy kinetic energy (EKE) and the ACC transport are uncorrelated, but the EKE decreases like the ACC transport over the three decades, even though meridional eddy fluxes of heat and buoyancy remain stable. The contribution of oceanic eddies to meridional transports is an important issue because a growth of the poleward eddy transport could, in theory, oppose the increase of the mean overturning circulation forced by the SAM. In the authors’ model, the total meridional circulation at 50°S is well correlated with the SAM index (and the Ekman transport) at interannual time scales, and both increase over three decades between 1972 and 2001. However, given the long-term drift, no SAM-linked trend in the eddy contribution to the meridional overturning circulation is detectable. The increase of the meridional overturning is due to the time-mean component and is compensated by an increased buoyancy gain at the surface. The authors emphasize that the meridional circulation does not vary in a simple relationship with the zonal circulation. The model solution points out that the zonal circulation and the eddy kinetic energy are governed by different mechanisms according to the time scale considered (interannual or decadal).


2010 ◽  
Vol 7 (3) ◽  
pp. 4045-4088 ◽  
Author(s):  
J. B. Palter ◽  
J. L. Sarmiento ◽  
A. Gnanadesikan ◽  
J. Simeon ◽  
D. Slater

Abstract. In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.


2013 ◽  
Vol 43 (6) ◽  
pp. 1193-1208 ◽  
Author(s):  
Matthew R. Mazloff ◽  
Raffaele Ferrari ◽  
Tapio Schneider

Abstract The Southern Ocean (SO) limb of the meridional overturning circulation (MOC) is characterized by three vertically stacked cells, each with a transport of about 10 Sv (Sv ≡ 106 m3 s−1). The buoyancy transport in the SO is dominated by the upper and middle MOC cells, with the middle cell accounting for most of the buoyancy transport across the Antarctic Circumpolar Current. A Southern Ocean state estimate for the years 2005 and 2006 with ⅙° resolution is used to determine the forces balancing this MOC. Diagnosing the zonal momentum budget in density space allows an exact determination of the adiabatic and diapycnal components balancing the thickness-weighted (residual) meridional transport. It is found that, to lowest order, the transport consists of an eddy component, a directly wind-driven component, and a component in balance with mean pressure gradients. Nonvanishing time-mean pressure gradients arise because isopycnal layers intersect topography or the surface in a circumpolar integral, leading to a largely geostrophic MOC even in the latitude band of Drake Passage. It is the geostrophic water mass transport in the surface layer where isopycnals outcrop that accomplishes the poleward buoyancy transport.


2010 ◽  
Vol 7 (11) ◽  
pp. 3549-3568 ◽  
Author(s):  
J. B. Palter ◽  
J. L. Sarmiento ◽  
A. Gnanadesikan ◽  
J. Simeon ◽  
R. D. Slater

Abstract. In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.


2009 ◽  
Vol 39 (11) ◽  
pp. 2926-2940 ◽  
Author(s):  
Jan D. Zika ◽  
Bernadette M. Sloyan ◽  
Trevor J. McDougall

Abstract The strength and structure of the Southern Hemisphere meridional overturning circulation (SMOC) is related to the along-isopycnal and vertical mixing coefficients by analyzing tracer and density fields from a hydrographic climatology. The meridional transport of Upper Circumpolar Deep Water (UCDW) across the Antarctic Circumpolar Current (ACC) is expressed in terms of the along-isopycnal (K) and diapycnal (D) tracer diffusivities and in terms of the along-isopycnal potential vorticity mixing coefficient (KPV). Uniform along-isopycnal (<600 m2 s−1) and low vertical mixing (10−5 m2 s−1) can maintain a southward transport of less than 60 Sv (Sv = 106 m2 s−1) of UCDW across the ACC, which is distributed largely across the South Pacific and east Indian Ocean basins. For vertical mixing rates of O(10−4 m2 s−1) or greater, the inferred transport is significantly enhanced. The transports inferred from both tracer and density distributions suggest a ratio K to D of O(2 × 106) particularly on deeper layers of UCDW. Given the range of observed southward transports of UCDW, it is found that K = 300 ± 150 m2 s−1 and D = 10−4 ± 0.5 × 10−4 m2 s−1 in the Southern Ocean interior. A view of the SMOC is revealed where dense waters are converted to lighter waters not only at the ocean surface, but also on depths below that of the mixed layer with vertical mixing playing an important role.


Sign in / Sign up

Export Citation Format

Share Document