scholarly journals Asian Origin of Interannual Variations of Summer Climate over the Extratropical North Atlantic Ocean

2012 ◽  
Vol 25 (19) ◽  
pp. 6594-6609 ◽  
Author(s):  
Ping Zhao ◽  
Song Yang ◽  
Renguang Wu ◽  
Zhiping Wen ◽  
Junming Chen ◽  
...  

Abstract The authors have identified an interannual relationship between Asian tropospheric temperature and the North Atlantic Ocean sea surface temperature (SST) during summer (May–September) and discussed the associated features of atmospheric circulation over the Atlantic–Eurasian region. When tropospheric temperature is high (low) over Asia, positive (negative) SST anomalies appear in the extratropical North Atlantic. This relationship is well supported by the changes in background atmospheric circulation and ocean–atmosphere–land thermodynamic processes. When heat transfer from the land surface to the atmosphere over Asia strengthens, local tropospheric temperature increases and positive temperature anomalies propagate westward from Asia to the North Atlantic, leading to an increase in summer tropospheric temperature over the Atlantic–Eurasian region. Accordingly, a deep anomalous ridge occurs over the extratropical North Atlantic Ocean, with low-level southerly anomalies over the western portion of the ocean. Sensitivity experiments with climate models show that the interannual variations of the North Atlantic–Eurasian atmospheric circulation may not be forced by the extratropical Atlantic SST. Instead, experiments with changing Asian land surface heating capture the above observed features of atmospheric circulation anomalies, westward propagation of tropospheric anomalies, and Atlantic SST anomalies. The consistency between the observational and model results indicates a possible impact of Asian land heating on the development of atmospheric circulation and SST anomalies over the Atlantic–Eurasian region.

2016 ◽  
Vol 29 (3) ◽  
pp. 1109-1125 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Yong Liu

Abstract This study investigates interannual variations of surface air temperature (SAT) over mid- and high latitudes of Eurasia during boreal spring and their association with snow, atmospheric circulation, and sea surface temperature (SST) changes. The leading mode of spring SAT variations is featured by same-sign anomalies over most regions. The second mode features a tripole anomaly pattern with anomalies over the central part opposite to those over the eastern and western parts of Eurasia. A diagnosis of surface heat flux anomalies suggests that snow change contributes partly to SAT anomalies in several regions mainly by modulating surface shortwave radiation but cannot explain SAT changes in other regions. Atmospheric circulation anomalies play an important role in spring SAT variability via wind-induced heat advection and cloud-induced surface radiation changes. Positive SAT anomalies are associated with anomalous westerly winds from the North Atlantic Ocean or with anomalous anticyclone and southerly winds. Negative SAT anomalies occur in regions of anomalous cyclone and northerly winds. Atmospheric circulation anomalies associated with the first mode have a close relationship to spring Arctic Oscillation (AO), indicating the impact of the AO on continental-scale spring SAT variations over the mid- and high latitudes of Eurasia. The atmospheric circulation anomalies associated with the second mode feature a wave pattern over the North Atlantic and Eurasia. Such a wave pattern is related to a tripole SST anomaly pattern in the North Atlantic Ocean, signifying the contribution of the North Atlantic Ocean state to the formation of a tripole SAT anomaly pattern over the mid- and high latitudes of Eurasia.


2007 ◽  
Vol 20 (5) ◽  
pp. 891-907 ◽  
Author(s):  
Rowan T. Sutton ◽  
Daniel L. R. Hodson

Abstract Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations—but with larger amplitude—are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August–September–October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June–August and September–November. Surface anomalies in this region have the potential to excite coupled ocean–atmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

Sign in / Sign up

Export Citation Format

Share Document