scholarly journals Climate Response to Basin-Scale Warming and Cooling of the North Atlantic Ocean

2007 ◽  
Vol 20 (5) ◽  
pp. 891-907 ◽  
Author(s):  
Rowan T. Sutton ◽  
Daniel L. R. Hodson

Abstract Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations—but with larger amplitude—are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August–September–October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June–August and September–November. Surface anomalies in this region have the potential to excite coupled ocean–atmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.

2005 ◽  
Vol 18 (21) ◽  
pp. 4562-4581 ◽  
Author(s):  
I. V. Polyakov ◽  
U. S. Bhatt ◽  
H. L. Simmons ◽  
D. Walsh ◽  
J. E. Walsh ◽  
...  

Abstract Substantial changes occurred in the North Atlantic during the twentieth century. Here the authors demonstrate, through the analysis of a vast collection of observational data, that multidecadal fluctuations on time scales of 50–80 yr are prevalent in the upper 3000 m of the North Atlantic Ocean. Spatially averaged temperature and salinity from the 0–300- and 1000–3000-m layers vary in opposition: prolonged periods of cooling and freshening (warming and salinification) in one layer are generally associated with opposite tendencies in the other layer, consistent with the notion of thermohaline overturning circulation. In the 1990s, widespread cooling and freshening was a dominant feature in the 1000–3000-m layer, whereas warming and salinification generally dominated in the upper 300 m, except for the subpolar North Atlantic where complex exchanges with the Arctic Ocean occur. The single-signed basin-scale pattern of multidecadal variability is evident from decadal 1000–3000-m temperature and salinity fields, whereas upper-ocean temperature and salinity distributions have a more complicated spatial pattern. Results suggest a general warming trend of 0.012° ± 0.009°C decade−1 in the upper-3000-m North Atlantic over the last 55 yr of the twentieth century, although during this time there are periods in which short-term trends are strongly amplified by multidecadal variability. Since warming (cooling) is generally associated with salinification (freshening) for these large-scale fluctuations, qualitatively tracking the mean temperature–salinity relationship, vertical displacement of isotherms appears to play an important role in this warming and in other observed fluctuations. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating global thermohaline circulation, the multidecadal fluctuations of the heat and freshwater balance discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.


2012 ◽  
Vol 25 (19) ◽  
pp. 6594-6609 ◽  
Author(s):  
Ping Zhao ◽  
Song Yang ◽  
Renguang Wu ◽  
Zhiping Wen ◽  
Junming Chen ◽  
...  

Abstract The authors have identified an interannual relationship between Asian tropospheric temperature and the North Atlantic Ocean sea surface temperature (SST) during summer (May–September) and discussed the associated features of atmospheric circulation over the Atlantic–Eurasian region. When tropospheric temperature is high (low) over Asia, positive (negative) SST anomalies appear in the extratropical North Atlantic. This relationship is well supported by the changes in background atmospheric circulation and ocean–atmosphere–land thermodynamic processes. When heat transfer from the land surface to the atmosphere over Asia strengthens, local tropospheric temperature increases and positive temperature anomalies propagate westward from Asia to the North Atlantic, leading to an increase in summer tropospheric temperature over the Atlantic–Eurasian region. Accordingly, a deep anomalous ridge occurs over the extratropical North Atlantic Ocean, with low-level southerly anomalies over the western portion of the ocean. Sensitivity experiments with climate models show that the interannual variations of the North Atlantic–Eurasian atmospheric circulation may not be forced by the extratropical Atlantic SST. Instead, experiments with changing Asian land surface heating capture the above observed features of atmospheric circulation anomalies, westward propagation of tropospheric anomalies, and Atlantic SST anomalies. The consistency between the observational and model results indicates a possible impact of Asian land heating on the development of atmospheric circulation and SST anomalies over the Atlantic–Eurasian region.


2020 ◽  
Author(s):  
Andrew Delman ◽  
Tong Lee

Abstract. The meridional heat transport (MHT) in the North Atlantic is critically important to climate variability and the global overturning circulation. A wide range of ocean processes contribute to North Atlantic MHT, ranging from basin-scale overturning and gyre motions to mesoscale instabilities (such as eddies). However, previous analyses of eddy MHT in the region have mostly focused on the contributions of time-variable velocity and temperature, rather than considering the spatial scales that are more fundamental to the physics of ocean eddies. In this study, a zonal spatial-scale decomposition separates large-scale from mesoscale velocity and temperature contributions to MHT, in order to characterize the physical processes driving MHT. Using this approach, we found that the mesoscale contributions to the time mean and interannual/decadal (ID) variability of MHT in the North Atlantic Ocean are larger than large-scale horizontal contributions, though smaller than the overturning contributions. Considering the 40° N transect as a case study, large-scale ID variability is mostly generated in the deeper part of the thermocline, while mesoscale ID variability has shallower origins. At this latitude, most ID MHT variability associated with mesoscales originates in two regions: a western boundary region (70°–60° W) associated with 1–4 year interannual variations, and an interior region (50°–35° W) associated with decadal variations. Surface eddy kinetic energy is not a reliable indicator of high MHT episodes, but the large-scale meridional temperature gradient is an important factor, by influencing the local temperature variance as well as the local correlation of velocity and temperature. Most of the mesoscale contribution to MHT at 40° N is associated with transient and propagating processes, but stationary mesoscale dynamics contribute substantially to MHT south of the Gulf Stream separation, highlighting the differences between the temporal and spatial decomposition of meridional temperature fluxes.


Science ◽  
2009 ◽  
Vol 324 (5928) ◽  
pp. 791-793 ◽  
Author(s):  
P. Koeller ◽  
C. Fuentes-Yaco ◽  
T. Platt ◽  
S. Sathyendranath ◽  
A. Richards ◽  
...  

Ocean Science ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1179-1203 ◽  
Author(s):  
Marcel Kleinherenbrink ◽  
Riccardo Riva ◽  
Yu Sun

Abstract. In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document