scholarly journals Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio–Oyashio Extension Variability

2013 ◽  
Vol 26 (24) ◽  
pp. 9839-9859 ◽  
Author(s):  
Young-Oh Kwon ◽  
Terrence M. Joyce

Abstract Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., 〈υ′T′〉 and 〈υ′q′〉) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension (OE) are examined based on an atmospheric reanalyses and ocean observations for 1979–2009. For the climatological winter mean, the northward heat fluxes by the synoptic (2–8 days) transient eddies exhibit canonical storm tracks with their maxima collocated with the GS and KE/OE. The intraseasonal (8 days–3 months) counterpart, while having overall similar amplitude, shows a spatial pattern with more localized maxima near the major orography and blocking regions. Lateral heat flux divergence by transient eddies as the sum of the two frequency bands exhibits very close coupling with the exact locations of the ocean fronts. Linear regression is used to examine the lead–lag relationship between interannual changes in the northward heat fluxes by the transient eddies and the meridional changes in the paths of the GS, KE, and OE, respectively. One to three years prior to the northward shifts of each ocean front, the atmospheric storm tracks shift northward and intensify, which is consistent with wind-driven changes of the ocean. Following the northward shifts of the ocean fronts, the synoptic storm tracks weaken in all three cases. The zonally integrated northward heat transport by the synoptic transient eddies increases by ~5% of its maximum mean value prior to the northward shift of each ocean front and decreases to a similar amplitude afterward.

2006 ◽  
Vol 28 (7-8) ◽  
pp. 683-702 ◽  
Author(s):  
C. Z. Greeves ◽  
V. D. Pope ◽  
R. A. Stratton ◽  
G. M. Martin

2004 ◽  
Vol 17 (21) ◽  
pp. 4230-4244 ◽  
Author(s):  
Edmund K. M. Chang

Abstract In this study, the correlation between the Northern Hemisphere winter Pacific and Atlantic storm tracks is examined using the NCEP–NCAR reanalysis and the 40-yr ECMWF Re-Analysis (ERA-40), as well as unassimilated aircraft observations. By examining month-to-month variability in the 250-hPa meridional velocity variance, the correlation between the two storm track peaks is found to be as high as 0.5 during the winters between 1975/76 and 1998/99. Here, it is shown that the correlation between the two storm tracks can be clearly detected from the aircraft data. Further analyses of the reanalysis data show that the correlation can also be seen in other eddy variance and covariance statistics, including the poleward heat flux at the 700-hPa level. The correlation between the two storm tracks, as seen in both reanalysis datasets, is shown to be much weaker during the period 1957/58–1971/72, suggesting a possible regime transition from largely uncorrelated storm tracks to highly correlated storm tracks during the 1970s. However, during this earlier period, the number of aircraft observations is insufficient to verify the low correlation seen in the reanalyses. Thus, low biases in the reanalyses during the earlier period cannot be ruled out. An ensemble of four GCM simulations performed using the GFDL GCM forced by global observed SST variations between 1950 and 1995 has also been examined. The correlation between the two storm tracks in the GCM simulations is much lower (0.18) than that observed, even if the analysis is restricted to the GCM simulations from the period 1975/76–1994/95. A Monte Carlo test shows that the observed correlation and the GCM correlation are statistically distinct at the 1% level. Correlations between the Southern Hemisphere summer Pacific and Atlantic storm tracks have also been examined based on the reanalyses datasets. The results suggest that the amplitude of the SH summer Pacific and Atlantic storm tracks are not significantly correlated, showing that seeding of the Atlantic storm track by the Pacific storm track does not necessarily lead to significant correlations between the two storm tracks.


2012 ◽  
Vol 69 (6) ◽  
pp. 1811-1823 ◽  
Author(s):  
David W. J. Thompson ◽  
Thomas Birner

Abstract Previous studies have demonstrated the key role of baroclinicity and thus the isentropic slope in determining the climatological-mean distribution of the tropospheric eddy fluxes of heat. Here the authors examine the role of variability in the isentropic slope in driving variations in the tropospheric eddy fluxes of heat about their long-term mean during Northern Hemisphere winter. On month-to-month time scales, the lower-tropospheric isentropic slope and eddy fluxes of heat are not significantly correlated when all eddies are included in the analysis. But the isentropic slope and heat fluxes are closely linked when the data are filtered to isolate the fluxes due to synoptic (<10 days) and low-frequency (>10 days) time scale waves. Anomalously steep isentropic slopes are characterized by anomalously poleward heat fluxes by synoptic eddies but anomalously equatorward heat fluxes by low-frequency eddies. Lag regressions based on daily data reveal that 1) variations in the isentropic slope precede by several days variations in the heat fluxes by synoptic eddies and 2) variations in the heat fluxes due to both synoptic and low-frequency eddies precede by several days similarly signed variations in the momentum flux at the tropopause level. The results suggest that seemingly modest changes in the tropospheric isentropic slope drive significant changes in the synoptic eddy heat fluxes and thus in the generation of baroclinic wave activity in the lower troposphere. The linkages have implications for understanding the extratropical tropospheric eddy response to a range of processes, including anthropogenic climate change, stratospheric variability, and extratropical sea surface temperature anomalies.


2018 ◽  
Vol 45 (6) ◽  
pp. 2786-2794 ◽  
Author(s):  
Jiabao Wang ◽  
Hye-Mi Kim ◽  
Edmund K. M. Chang

2016 ◽  
Vol 94 (1) ◽  
pp. 7-24 ◽  
Author(s):  
Tomoko ICHIMARU ◽  
Shunsuke NOGUCHI ◽  
Toshihiko HIROOKA ◽  
Hitoshi MUKOUGAWA

Sign in / Sign up

Export Citation Format

Share Document