scholarly journals Rectification of El Niño–Southern Oscillation into Climate Anomalies of Decadal and Longer Time Scales: Results from Forced Ocean GCM Experiments

2014 ◽  
Vol 27 (7) ◽  
pp. 2545-2561 ◽  
Author(s):  
De-Zheng Sun ◽  
Tao Zhang ◽  
Yan Sun ◽  
Yongqiang Yu

Abstract To better understand the causes of climate change in the tropical Pacific on the decadal and longer time scales, the rectification effect of ENSO events is delineated by contrasting the time-mean state of two forced ocean GCM experiments. In one of them, the long-term mean surface wind stress of 1950–2011 is applied, while in the other, the surface wind stress used is the long-term mean surface wind stress of 1950–2011 plus the interannual monthly anomalies over the period. Thus, the long-term means of the surface wind stress in the two runs are identical. The two experiments also use the same relaxation boundary conditions, that is, the SST is restored to the same prescribed values. The two runs, however, are found to yield significantly different mean climate for the tropical Pacific. The mean state of the run with interannual fluctuations in the surface winds is found to have a cooler warm pool, warmer thermocline water, and warmer eastern surface Pacific than the run without interannual fluctuations in the surface winds. The warming of the eastern Pacific has a pattern that resembles the observed decadal warming. In particular, the pattern features an off-equator maximum as the observed decadal warming. The spatial pattern of the time-mean upper-ocean temperature differences between the two experiments is shown to resemble that of the differences in the nonlinear dynamic heating, underscoring the role of the nonlinear ocean dynamics in the rectification. The study strengthens the suggestion that rectification of ENSO can be a viable mechanism for climate change of decadal and longer time scales.

2020 ◽  
Vol 33 (4) ◽  
pp. 1209-1226 ◽  
Author(s):  
Xia Lin ◽  
Xiaoming Zhai ◽  
Zhaomin Wang ◽  
David R. Munday

AbstractThe Southern Ocean (SO) surface wind stress is a major atmospheric forcing for driving the Antarctic Circumpolar Current and the global overturning circulation. Here the effects of wind fluctuations at different time scales on SO wind stress in 18 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are investigated. It is found that including wind fluctuations, especially on time scales associated with synoptic storms, in the stress calculation strongly enhances the mean strength, modulates the seasonal cycle, and significantly amplifies the trends of SO wind stress. In 11 out of the 18 CMIP5 models, the SO wind stress has strengthened significantly over the period of 1960–2005. Among them, the strengthening trend of SO wind stress in one CMIP5 model is due to the increase in the intensity of wind fluctuations, while in all the other 10 models the strengthening trend is due to the increasing strength of the mean westerly wind. These discrepancies in SO wind stress trend in CMIP5 models may explain some of the diverging behaviors in the model-simulated SO circulation. Our results suggest that to reduce the uncertainty in SO responses to wind stress changes in the coupled models, both the mean wind and wind fluctuations need to be better simulated.


2019 ◽  
Vol 36 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Lingsheng Meng ◽  
Wei Zhuang ◽  
Weiwei Zhang ◽  
Angela Ditri ◽  
Xiao-Hai Yan

AbstractSea level changes within wide temporal–spatial scales have great influence on oceanic and atmospheric circulations. Efforts have been made to identify long-term sea level trend and regional sea level variations on different time scales. A nonuniform sea level rise in the tropical Pacific and the strengthening of the easterly trade winds from 1993 to 2012 have been widely reported. It is well documented that sea level in the tropical Pacific is associated with the typical climate modes. However, sea level change on interannual and decadal time scales still requires more research. In this study, the Pacific sea level anomaly (SLA) was decomposed into interannual and decadal time scales via an ensemble empirical mode decomposition (EEMD) method. The temporal–spatial features of the SLA variability in the Pacific were examined and were closely associated with climate variability modes. Moreover, decadal SLA oscillations in the Pacific Ocean were identified during 1993–2016, with the phase reversals around 2000, 2004, and 2012. In the tropical Pacific, large sea level variations in the western and central basin were a result of changes in the equatorial wind stress. Moreover, coherent decadal changes could also be seen in wind stress, sea surface temperature (SST), subtropical cells (STCs), and thermocline depth. Our work provided a new way to illustrate the interannual and decadal sea level variations in the Pacific Ocean and suggested a coupled atmosphere–ocean variability on a decadal time scale in the tropical region with two cycles from 1993 to 2016.


2001 ◽  
Vol 14 (7) ◽  
pp. 1479-1498 ◽  
Author(s):  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Michael G. Schlax ◽  
Nicolai Thum ◽  
Michael H. Freilich ◽  
...  

2015 ◽  
Vol 12 (8) ◽  
pp. 6525-6587 ◽  
Author(s):  
A. Cabré ◽  
I. Marinov ◽  
R. Bernardello ◽  
D. Bianchi

Abstract. We analyze simulations of the Pacific Ocean oxygen minimum zones (OMZs) from 11 Earth System model contributions to the Coupled Model Intercomparison Project Phase 5, focusing on the mean state and climate change projections. The simulations tend to overestimate the volume of the OMZs, especially in the tropics and Southern Hemisphere. Compared to observations, five models introduce incorrect meridional asymmetries in the distribution of oxygen including larger southern OMZ and weaker northern OMZ, due to interhemispheric biases in intermediate water mass ventilation. Seven models show too deep an extent of the tropical hypoxia compared to observations, stemming from a deficient equatorial ventilation in the upper ocean combined with a too large biologically-driven downward flux of particulate organic carbon at depth, caused by too high particle export from the euphotic layer and too weak remineralization in the upper ocean. At interannual timescales, the dynamics of oxygen in the eastern tropical Pacific OMZ is dominated by biological consumption and linked to natural variability in the Walker circulation. However, under the climate change scenario RCP8.5, all simulations yield small and discrepant changes in oxygen concentration at mid depths in the tropical Pacific by the end of the 21st century due to an almost perfect compensation between warming-related decrease in oxygen saturation and decrease in biological oxygen utilization. Climate change projections are at odds with recent observations that show decreasing oxygen levels at mid depths in the tropical Pacific. Out of the OMZs, all the CMIP5 models predict a decrease of oxygen over most of the surface, deep and high latitudes ocean due to an overall slow-down of ventilation and increased temperature.


Sign in / Sign up

Export Citation Format

Share Document