scholarly journals Are Simulated Megadroughts in the North American Southwest Forced?*

2014 ◽  
Vol 28 (1) ◽  
pp. 124-142 ◽  
Author(s):  
Sloan Coats ◽  
Jason E. Smerdon ◽  
Benjamin I. Cook ◽  
Richard Seager

Abstract Multidecadal drought periods in the North American Southwest (25°–42.5°N, 125°–105°W), so-called megadroughts, are a prominent feature of the paleoclimate record over the last millennium (LM). Six forced transient simulations of the LM along with corresponding historical (1850–2005) and 500-yr preindustrial control runs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to determine if atmosphere–ocean general circulation models (AOGCMs) are able to simulate droughts that are similar in persistence and severity to the megadroughts in the proxy-derived North American Drought Atlas. Megadroughts are found in each of the AOGCM simulations of the LM, although there are intermodel differences in the number, persistence, and severity of these features. Despite these differences, a common feature of the simulated megadroughts is that they are not forced by changes in the exogenous forcing conditions. Furthermore, only the Community Climate System Model (CCSM), version 4, simulation contains megadroughts that are consistently forced by cooler conditions in the tropical Pacific Ocean. These La Niña–like mean states are not accompanied by changes to the interannual variability of the El Niño–Southern Oscillation system and result from internal multidecadal variability of the tropical Pacific mean state, of which the CCSM has the largest magnitude of the analyzed simulations. Critically, the CCSM is also found to have a realistic teleconnection between the tropical Pacific and North America that is stationary on multidecadal time scales. Generally, models with some combination of a realistic and stationary teleconnection and large multidecadal variability in the tropical Pacific are found to have the highest incidence of megadroughts driven by the tropical Pacific boundary conditions.

2013 ◽  
Vol 26 (19) ◽  
pp. 7635-7649 ◽  
Author(s):  
Sloan Coats ◽  
Jason E. Smerdon ◽  
Richard Seager ◽  
Benjamin I. Cook ◽  
J. F. González-Rouco

Abstract Simulated hydroclimate variability in millennium-length forced transient and control simulations from the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled atmosphere–ocean general circulation model (AOGCM) is analyzed and compared to 1000 years of reconstructed Palmer drought severity index (PDSI) variability from the North American Drought Atlas (NADA). The ability of the model to simulate megadroughts in the North American southwest is evaluated. (NASW: 25°–42.5°N, 125°–105°W). Megadroughts in the ECHO-G AOGCM are found to be similar in duration and magnitude to those estimated from the NADA. The droughts in the forced simulation are not, however, temporally synchronous with those in the paleoclimate record, nor are there significant differences between the drought features simulated in the forced and control runs. These results indicate that model-simulated megadroughts can result from internal variability of the modeled climate system rather than as a response to changes in exogenous forcings. Although the ECHO-G AOGCM is capable of simulating megadroughts through persistent La Niña–like conditions in the tropical Pacific, other mechanisms can produce similarly extreme NASW moisture anomalies in the model. In particular, the lack of low-frequency coherence between NASW soil moisture and simulated modes of climate variability like the El Niño–Southern Oscillation, Pacific decadal oscillation, and Atlantic multidecadal oscillation during identified drought periods suggests that stochastic atmospheric variability can contribute significantly to the occurrence of simulated megadroughts in the NASW. These findings indicate that either an expanded paradigm is needed to understand multidecadal hydroclimate variability in the NASW or AOGCMs may incorrectly simulate the strength and/or dynamics of the connection between NASW hydroclimate variability and the tropical Pacific.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


1992 ◽  
Vol 13 (4) ◽  
pp. 318-330 ◽  
Author(s):  
John A. Harrington Jr. ◽  
Randall S. Cerveny ◽  
Robert C. Balling Jr.

2003 ◽  
Vol 68 (4) ◽  
pp. 696-717 ◽  
Author(s):  
Christine S. VanPool

The Casas Grandes culture flourished between two well-known regions: Mesoamerica and the North American Southwest. An analysis of Medio period (A.D. 1200-1450) pottery suggests that Paquimé, the center of the Casas Grandes world, was dominated by shaman-priests. The pottery includes images that document a “classic shamanic journey” between this world and the spirit world. These images can be connected to the leaders of Paquimé and to valuable objects from West Mexico, indicating that the Casas Grandes leadership had more in common with the Mesoamerican system of shaman-leaders than with the political system of the Pueblo world of the North American Southwest.


Sign in / Sign up

Export Citation Format

Share Document