scholarly journals Tropospheric Rossby Wave Breaking and Variability of the Latitude of the Eddy-Driven Jet

2014 ◽  
Vol 27 (18) ◽  
pp. 7069-7085 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Darryn W. Waugh

Abstract A dry general circulation model is used to investigate the connections between Rossby wave breaking and the latitude of the midlatitude tropospheric eddy-driven jet. An ensemble of experiments is constructed in which the jet latitude is influenced by a midlatitude tropospheric temperature anomaly that resembles observed climate change and by the imposition of a stratospheric polar vortex, and the distribution of Rossby wave breaking frequency is examined for each experiment. The shift in wave breaking per degree latitude of jet shift is then compared for three different sources of jet movement: the tropospheric baroclinic forcing imposed in midlatitudes, the imposition of a stratospheric polar vortex, and the internal variability of the midlatitude eddy-driven jet. It is demonstrated that all three sources of jet movement produce a similar change in Rossby wave breaking frequency per degree of jet shift. Hence, it is difficult (if not impossible) to isolate the ultimate cause behind the shift in Rossby wave breaking in response to the two external forcings.

2020 ◽  
Vol 146 (729) ◽  
pp. 1939-1959
Author(s):  
Hua Lu ◽  
Matthew H. Hitchman ◽  
Lesley J. Gray ◽  
James A. Anstey ◽  
Scott M. Osprey

2013 ◽  
Vol 70 (9) ◽  
pp. 2982-3001 ◽  
Author(s):  
Alvaro de la Cámara ◽  
Carlos R. Mechoso ◽  
Ana M. Mancho ◽  
Encarna Serrano ◽  
Kayo Ide

Abstract The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by Vorcore and Concordiasi field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away from and toward the poleward flank of the polar-night jet. The present paper applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain-filling calculations of potential vorticity (PV) fields from the ECMWF Interim Re-Analysis (ERA-Interim) dataset during the events show irreversible filamentation of the PV fields in the inner side of the polar-night jet, which is a signature of planetary (Rossby) wave breaking. Balloon motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arc length) and small (~5° of arc length) balloon displacements from the vortex edge are associated, respectively, with deep and shallow penetration into the core of the elongated PV contours. Additionally, the Lagrangian descriptor M is applied to study the configuration of Lagrangian structures during the events. Breaking Rossby waves inside the vortex lead to the presence of hyperbolic points. The geometric configuration of the invariant manifolds associated with the hyperbolic trajectories helps to understand the apparent chaotic behavior of balloons' motions and to identify and analyze balloon transport events not captured by reverse domain-filling calculations. The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.


Abstract A dry-core idealized general circulation model with a stratospheric polar vortex in the northern hemisphere is run with a combination of simplified topography and imposed tropospheric temperature perturbations, each located in the northern hemisphere with a zonal wave number of one. The phase difference between the imposed temperature wave and the topography is varied to understand what effect this has on the occurrence of polar vortex displacements. Geometric moments are used to identify the centroid of the polar vortex for the purposes of classifying whether or not the polar vortex is displaced. Displacements of the polar vortex are a response to increased tropospheric wave activity. Compared to a model run with only topography, the likelihood of the polar vortex being displaced increases when the warm region is located west of the topography peak, and decreases when the cold region is west of the topography peak. This response from the polar vortex is due to the modulation of vertically propogating wave activity by the temperature forcing. When the southerly winds on the western side of the topographically forced anticyclone are collocated with warm or cold temperature forcing, the vertical wave activity flux in the troposphere becomes more positive or negative, respectively. This is in line with recent reanalysis studies which showed that anomalous warming west of the surface pressure high, in the climatological standing wave, precedes polar vortex disturbances.


2010 ◽  
Vol 23 (6) ◽  
pp. 1269-1276 ◽  
Author(s):  
Courtenay Strong ◽  
Gudrun Magnusdottir

Abstract The role of Rossby wave breaking (RWB) is explored in the transient response of an atmospheric general circulation model to boundary forcing by sea ice anomalies related to the North Atlantic Oscillation (NAO). When the NCAR Community Climate Model, version 3, was forced by an exaggerated sea ice extent anomaly corresponding to one arising from a positive NAO, a localized baroclinic response developed and evolved into a larger-scale equivalent barotropic pattern resembling the negative polarity of the NAO. The initial baroclinic response shifted the phase speeds of the dominant eddies away from a critical value equal to the background zonal flow speed, resulting in significant changes in the spatial distribution of RWB. The forcing of the background zonal flow by the changes in RWB accounts for 88% of the temporal pattern of the response and 80% of the spatial pattern of the zonally averaged response. Although results here focus on one experiment, this “RWB critical line mechanism” appears to be relevant to understanding the equilibrium response in a broad class of boundary forcing experiments given increasingly clear connections among the northern annular mode, jet latitude shifts, and RWB.


2004 ◽  
Vol 61 (22) ◽  
pp. 2735-2748 ◽  
Author(s):  
Noboru Nakamura

Abstract Effective diffusivity calculated from a scalar field that obeys the advection–diffusion equation has proved useful for estimating the permeability of unsteady boundaries of air masses such as the edge of the stratospheric polar vortex and the extratropical tropopause. However, the method does not discriminate the direction of transport—whereas some material crosses the boundary from one side to the other, some material does so in the other direction—yet the extant method concerns only the net transport. In this paper, the diagnostic is extended to allow partitioning of fluxes of mass and tracer into opposing directions. This is accomplished by discriminating the regions of “inward” and “outward” wave breaking with the local curvature of the tracer field. The utility of the new method is demonstrated for nonlinear Kelvin– Helmholtz instability and Rossby wave breaking in the stratosphere using a numerically generated tracer. The method successfully quantifies two-way transport and hence the direction of wave breaking—the predominantly equatorward breaking of Rossby waves in the extratropical middle stratosphere, for example. Isolated episodes of mixing are identified well, particularly by the mass flux that primarily arises from the tracer filaments. Comparison of different transport schemes suggests that the results are reasonably robust under a varying subgrid representation of the model.


2020 ◽  
Author(s):  
Raphael Köhler ◽  
Dörthe Handorf ◽  
Ralf Jaiser ◽  
Klaus Dethloff ◽  
Günther Zängl ◽  
...  

<p>The stratospheric polar vortex is highly variable in winter and thus, models often struggle to capture its variability and strength. Yet, the influence of the stratosphere on the tropospheric circulation becomes highly important in Northern Hemisphere winter and is one of the main potential sources for subseasonal to seasonal prediction skill in mid latitudes. Mid-latitude extreme weather patterns in winter are often preceded by sudden stratospheric warmings (SSWs), which are the strongest manifestation of the coupling between stratosphere and troposphere. Misrepresentation of the SSW-frequency and stratospheric biases in models can therefore also cause biases in the troposphere.</p><p>In this context this work comprises the analysis of four seasonal ensemble experiments with a high-resolution, nonhydrostatic global atmospheric general circulation model in numerical weather prediction mode (ICON-NWP). The main focus thereby lies on the variability and strength of the stratospheric polar vortex. We identified the gravity wave drag parametrisations as one important factor influencing stratospheric dynamics. As the control experiment with default gravity wave drag settings exhibits an overestimated amount of SSWs and a weak stratospheric polar vortex, three sensitivity experiments with adjusted drag parametrisations were generated. Hence, the parametrisations for the non-orographic gravity wave drag and the subgrid‐scale orographic (SSO) drag were chosen with the goal of strengthening the stratospheric polar vortex. Biases to ERA-Interim are reduced with both adjustments, especially in high latitudes. Whereas the positive effect of the reduced non-orographic gravity wave drag is strongest in the mid-stratosphere in winter, the adjusted SSO-scheme primarily affects the troposphere by reducing mean sea level pressure biases in all months. A fourth experiment using both adjustments exhibits improvements in the troposphere and stratosphere. Although the stratospheric polar vortex in winter is strengthened in all sensitivity experiments, it is still simulated too weak compared to ERA-Interim. Further mechanisms causing this weakness are also investigated in this study.</p>


2009 ◽  
Vol 22 (8) ◽  
pp. 1920-1933 ◽  
Author(s):  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The impact of stratospheric variability on the dynamical coupling between the stratosphere and the troposphere is explored in a relatively simple atmospheric general circulation model. Variability of the model’s stratospheric polar vortex, or polar night jet, is induced by topographically forced stationary waves. A robust relationship is found between the strength of the stratospheric polar vortex and the latitude of the tropospheric jet, confirming and extending earlier results in the absence of stationary waves. In both the climatological mean and on intraseasonal time scales, a weaker vortex is associated with an equatorward shift in the tropospheric jet and vice versa. It is found that the mean structure and variability of the vortex in the model is very sensitive to the amplitude of the topography and that Northern Hemisphere–like variability, with a realistic frequency of stratospheric sudden warming events, occurs only for a relatively narrow range of topographic heights. When the model captures sudden warming events with fidelity, however, the exchange of information both upward and downward between the troposphere and stratosphere closely resembles that in observations. The influence of stratospheric variability on variability in the troposphere is demonstrated by comparing integrations with and without an active stratosphere. A realistic, time-dependent stratospheric circulation increases the persistence of the tropospheric annular modes, and the dynamical coupling is most apparent prior to and following stratospheric sudden warming events.


2015 ◽  
Vol 73 (1) ◽  
pp. 393-406 ◽  
Author(s):  
Anirban Guha ◽  
Carlos R. Mechoso ◽  
Celal S. Konor ◽  
Ross P. Heikes

Abstract Rossby wave breaking (RWB) plays a central role in the evolution of stratospheric flows. The generation and evolution of RWB is examined in the simple dynamical framework of a one-layer shallow-water system on a sphere. The initial condition represents a realistic, zonally symmetric velocity profile corresponding to the springtime southern stratosphere. Single zonal wavenumber Rossby waves, which are either stationary or traveling zonally with realistic speeds, are superimposed on the initial velocity profile. Particular attention is placed on the Lagrangian structures associated with RWB. The Lagrangian analysis is based on the calculation of trajectories and the application of a diagnostic tool known as the “M” function. Hyperbolic trajectories (HTs), produced by the transverse intersections of stable and unstable invariant manifolds, may yield chaotic saddles in M. Previous studies associated HTs with “cat’s eyes” generated by planetary wave breaking at the critical levels. HTs, and hence RWB, are found both outside and inside the stratospheric polar vortex (SPV). Significant findings are as follows: (i) stationary forcing produces HTs only outside of the SPV and (ii) eastward-traveling wave forcing can produce HTs both outside and inside of the SPV. In either case, HTs appear at or near the critical latitudes. RWB was found to occur inside the SPV even when the forcing was located completely outside. In all cases, the westerly jet remained impermeable throughout the simulations. The results suggest that the HT inside the SPV observed by de la Cámara et al. during the southern spring 2005 was due to RWB of an eastward-traveling wave of wavenumber 1.


2007 ◽  
Vol 64 (7) ◽  
pp. 2683-2694 ◽  
Author(s):  
M. L. R. Liberato ◽  
J. M. Castanheira ◽  
L. de la Torre ◽  
C. C. DaCamara ◽  
L. Gimeno

Abstract A study is performed on the energetics of planetary wave forcing associated with the variability of the northern winter polar vortex. The analysis relies on a three-dimensional normal mode expansion of the atmospheric general circulation that allows partitioning the total (i.e., kinetic + available potential) atmospheric energy into the energy associated with Rossby and inertio-gravity modes with barotropic and baroclinic vertical structures. The analysis mainly departs from traditional ones in respect to the wave forcing, which is here assessed in terms of total energy amounts associated with the waves instead of heat and momentum fluxes. Such an approach provides a sounder framework than traditional ones based on Eliassen–Palm (EP) flux diagnostics of wave propagation and related concepts of refractive indices and critical lines, which are strictly valid only in the cases of small-amplitude waves and in the context of the Wentzel–Kramers–Brillouin–Jeffries (WKBJ) approximation. Positive (negative) anomalies of the energy associated with the first two baroclinic modes of the planetary Rossby wave with zonal wavenumber 1 are followed by a downward progression of negative (positive) anomalies of the vortex strength. A signature of the vortex vacillation is also well apparent in the lagged correlation curves between the wave energy and the vortex strength. The analysis of the correlations between individual Rossby modes and the vortex strength further confirmed the result from linear theory that the waves that force the vortex are those associated with the largest zonal and meridional scales. The two composite analyses of displacement- and split-type stratospheric sudden warming (SSW) events have revealed different dynamics. Displacement-type SSWs are forced by positive anomalies of the energy associated with the first two baroclinic modes of planetary Rossby waves with zonal wavenumber 1; split-type SSWs are in turn forced by positive anomalies of the energy associated with the planetary Rossby wave with zonal wavenumber 2, and the barotropic mode appears as the most important component. In respect to stratospheric final warming (SFW) events, obtained results suggest that the wave dynamics is similar to the one in displacement-type SSW events.


Sign in / Sign up

Export Citation Format

Share Document